mppss.ru – Все про автомобили

Все про автомобили

Эдс самоиндукции и индуктивность цепи. Самоиндукция. Энергия самоиндукции, индуктивность - материалы для подготовки к ЕГЭ по Физике Закон самоиндукции определение

Урок № 46-169

Самоиндукция - явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции.

Проявление явления самоиндукции.

Замыкание цепи. При замыкании в электрической цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое электрическое поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).

В результате Л1 загорается позже, чем Л2.

Размыкание цепи.

При размыкании электрической цепи ток убывает, возникает уменьшение магнитного потока в катушке, возникает вихревое электрическое поле, направленное как ток (стремящееся сохранить прежнюю силу тока), т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает.

Индуктивность , или коэффициент самоиндук­ции - параметр электрической цепи, который определяет ЭДС самоиндукции, наводимой в цепи при изменении протекающего по ней тока или (и) ее деформации. Термином «индуктивность» обозначают также катушку самоиндукции, которая определяет ин­дуктивные свойства цепи.

Самоиндукция - возникновение ЭДС индук­ции в проводящем контуре при изменении в нем силы тока. ЭДС индукции возникает при изменении маг­нитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндук­ции:

ε is =–
= –L,

где L - индуктивность контура, или его коэффи­ циент самоиндукции.

Индуктивность - физическая величина, чис­ленно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Ф - магнитный поток через контур, I - сила тока в контуре. Единица индуктивности в СИ генри (Гн): [ L] = [] = []= Гн; 1 Гн = 1
.

Индуктивность, как и электроемкость, зависит от геометрии проводника - его размеров и формы, но не зависит от силы тока в проводнике. Кроме того, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Индуктивность катушки зависит от:

− числа витков,

размеров и формы катушки;

от относительной магнитной проницаемости среды (возможен сердечник).

Токи замыкания и размыкания При любом включении и выключении тока в цепи наблюдаются так называемые экстрато­ки самоиндукции (экстратоки замыкания и раз­ мыкания), возникающие в цепи вследствие явле­ния самоиндукции и препятствующие (согласно правилу Ленца) нарастанию либо убыванию тока в цепи. Индуктивность характеризует инерционность цепи по отношению к изменению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом сила тока I играет роль скорости тела. Энергия магнитного поля тока. Найдем энергию, которой обла­дает электрический ток в провод­нике. Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энер­гии, которую должен затратить ис­точник тока (гальванический эле­мент, генератор на электростанции и др.) на создание тока. При прекращении тока эта энергия выделяется в той или иной форме. Выясним, почему же для созда­ния тока необходимо затратить энергию, т. е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое со­здается в проводнике благодаря ис­точнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток ис­чезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обна­руживается по мощной искре, воз­никающей при размыкании цепи с большой индуктивностью.

I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией, о которой говорилось выше. W м можно считать величиной, подобной кинетической энергии тела
в ме­ханике, и записать в виде W м =
(**) L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции, подобно тому, как плот­ность энергии электрического поля пропорциональна квадрату напряженности электрического поля.

Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 ?


Урок № 46-169 Самоиндукция. Индуктивность. Энергия магнитного поля тока. Д/з:§15; § 16 1. Самоиндукция – явление возникновения ЭДС в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции. По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока. А в момент умень­шения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах.

Схема параллельного со­единения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последователь­но с катушкой L , снабженной железным сердечником.

П
ри замыкании ключа первая лампа вспыхивает прак­тически сразу, а вторая - с заметным запозданием. ЭДС са­моиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис.).

Появление ЭДС самоиндукции при размыкании:

При размыкании ключа в катушке L возни­ кает ЭДС самоиндукции, поддерживающая первоначаль ный ток. В результате в момент размыкания через гальва­нометр идет ток (от R к A), направленный против начального тока до размыкания (I к амперметру). Сила тока при размыкании цепи может превышать силу тока,

проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции ε IS . больше ЭДС ε ба­ тареи элементов.

2. Индуктивность. Модуль вектора индукции магнит­ного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален , то Ф ~ В ~ I . Можно утверждать, что Ф=LI, (1)

где L - коэффициент пропорциональности между током в проводящем контуре и магнитным потоком. Величину L называют индуктивностью контура, или его коэффициен­ том самоиндукции.

Используя закон электромагнитной индукции и выра­жение (1), получаем равенство

ε IS = -= - L (2), если считать, что форма контура остается неизменной и по­ ток меняется только за счет изменения силы тока. Из формулы (2) следует, что индуктивность - это фи­ зическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от геометрических факторов: размеров проводника и его фор­мы, но не зависит непосредственно от силы тока в провод­нике. Кроме геометрии проводника, индуктивность зави­сит от магнитных свойств среды, в которой находится проводник.

Индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивает­ся в N раз.

Единицу индуктивности в СИ называют генри (обозна­чается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В: 1 Гн == 1


3. Энергия магнитного поля тока Согласно закону сохранения энергии энергия магнит­ного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи ток исчезает, и вихревое поле со­вершает положительную работу. Запасенная током энер­гия выделяется. Это обнаруживается, например, по мощ­ной искре, возникающей при размыкании цепи с большой индуктивностью. Записать выражение для энер­гии тока I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией. Если самоиндукция аналогична инерции, то индуктивность в про­цессе создания тока должна играть ту же роль, что и масса при увели­чении скорости тела в механике. Роль скорости тела в электродина­мике играет сила тока I как ве­личина, характеризующая движение электрических зарядов. Если это так, то энергию тока W м можно считать величиной, подобной кинетической энергии тела в ме­ханике, и записать в виде W м = (**) Именно такое выражение для энер­гии тока и получается в резуль­тате расчетов. Энергия тока (**) выражена через геометрическую характеристи­ку проводника L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции w М ~ В 2 , подобно тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w Э ~ Е 2

Запомни: Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.


Основные формулы: Закон Фарадея (законом электромагнитной индукции): ε = – ,где ΔФ - изменение магнитного потока, Δt - промежуток време­ни, за которое это изменение произошло.

Явление самоиндукции заключается в том, что при изменении тока в цепи возникает ЭДС, противодействующая этому изменению. Магнитный поток Ф через поверхность, ограниченную контуром, прямо пропорционален силе тока I в контуре: Ф = LI,

где L - коэф­фициент пропорциональности, называемый индуктивностью.

ЭДС самоиндукции выражается через изменение силы тока в цепи Δ I следующей фор­мулой:

ε = - = -L где Δt - время, за которое это изменение произошло.

Энергия магнитного поля W выражается формулой: W=

Задачи. Самоиндукция. Индуктивность.

1. Какая ЭДС самоиндукции возникает в катушке с индуктивностью 86 мГн, если ток 3,8А исчезает в ней за 0,012 с?

2. Определить ЭДС самоиндукции, если в катушке с индуктивностью 0,016 мГн сила тока уменьшается со скоростью 0,5 к А /с.

3. Какова индуктивность катушки, если при равномерном изменении в ней тока от 2 до 12 А за 0,1 с возникает ЭДС самоиндукции, равная 10 В?

4. Магнитный поток, пронизывающий контур проводника сопротивлением 0,2 Ом, равномерно изменяется с 1,2∙10 -3 Вб до 0,4∙10 -3 Вб за 2 мс. Определить силу тока в контуре.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 А/с?

6. Какова скорость изменения силы тока в обмотке реле с индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В?

7. Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн присоединяют к источнику тока с ЭДС 15 В и ничтожно малым внутренним сопротивлением. Через какой промежуток времени сила тока в катушке достигнет 50А? 8. Катушка индуктивностью 0,2 Гн подключена к источнику тока с ЭДС =10 В и внутренним сопротивление 0,4 Ом. Определить общую ЭДС в момент размыкания цепи, если ток в ней исчезает за 0,04 с, а сопротивление проволоки катушки 1,6 Ом. 9. Катушка сопротивлением 10 Ом и индуктивностью 0,01 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на 0,01 Вб, ток в катушке возрос на 0,5 А. Какой заряд прошёл за это время по катушке?

8

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком ) пропорционален модулю индукции В магнитного поля внутри контура \(\left(\Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left(B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left(\Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

\(\Phi = L \cdot I,\)

Где L - коэффициент пропорциональности, который называется индуктивностью контура .

  • Индуктивность контура - скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:
\(~L = \dfrac{\Phi}{I}.\)

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

\(~L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac{S}{l},\)

Где μ - магнитная проницаемость сердечника, μ 0 - магнитная постоянная, N - число витков соленоида, S - площадь витка, l - длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции . Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС - ЭДС самоиндукции E si . ЭДС самоиндукции создает в контуре ток самоиндукции I si .

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

\(E_{si} =-\dfrac{\Delta \Phi }{\Delta t}=-L\cdot \dfrac{\Delta I}{\Delta t}.\)

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (E si < 0), т.е. индукционный ток направлен в противоположную сторону тока источника. При уменьшении тока (ΔI < 0), ЭДС положительная (E si > 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

\(L=-E_{si} \cdot \dfrac{\Delta t}{\Delta I}.\)

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последовательно с катушкой L . При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции I si , который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

При размыкании ключа ток в лампе 2 также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа 2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).

Рис. 3

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.

Энергия магнитного поля

Энергия магнитного поля контура индуктивности L с силой тока I

\(~W_m = \dfrac{L \cdot I^2}{2}.\)

Так как \(~\Phi = L \cdot I\), то энергию магнитного поля тока (катушки) можно рассчитать, зная любые две величины из трех (Φ, L, I ):

\(~W_m = \dfrac{L \cdot I^2}{2} = \dfrac{\Phi \cdot I}{2}=\dfrac{\Phi^2}{2L}.\)

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля:

\(\omega_m = \dfrac{W_m}{V}.\)

*Вывод формулы

1 вывод.

Подключим к источнику тока проводящий контур с индуктивностью L . Пусть за малый промежуток времени Δt сила тока равномерно увеличится от нуля до некоторого значения I I = I ). ЭДС самоиндукции будет равна

\(E_{si} =-L \cdot \dfrac{\Delta I}{\Delta t} = -L \cdot \dfrac{I}{\Delta t}.\)

За данный промежуток время Δt через контур переносится заряд

\(\Delta q = \left\langle I \right \rangle \cdot \Delta t,\)

где \(\left \langle I \right \rangle = \dfrac{I}{2}\) - среднее значение силы тока за время Δt при равномерном его возрастании от нуля до I .

Сила тока в контуре с индуктивностью L достигает своего значения не мгновенно, а в течение некоторого конечного промежутка времени Δt . При этом в цепи возникает ЭДС самоиндукции E si , препятствующая нарастанию силы тока. Следовательно, источник тока при замыкании совершает работу против ЭДС самоиндукции, т.е.

\(A = -E_{si} \cdot \Delta q.\)

Работа, затраченная источником на создание тока в контуре (без учета тепловых потерь), и определяет энергию магнитного поля, запасаемую контуром с током. Поэтому

\(W_m = A = L \cdot \dfrac{I}{\Delta t} \cdot \dfrac{I}{2} \cdot \Delta t = \dfrac{L \cdot I^2}{2}.\)

2 вывод .

Если магнитное поле создано током, проходящим в соленоиде, то индуктивность и модуль индукции магнитного поля катушки равны

\(~L = \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S, \,\,\, ~B = \dfrac {\mu \cdot \mu_0 \cdot N \cdot I}{l}\)

\(I = \dfrac {B \cdot l}{\mu \cdot \mu_0 \cdot N}.\)

Подставив полученные выражения в формулу для энергии магнитного поля, получим

\(~W_m = \dfrac {1}{2} \cdot \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S \cdot \dfrac {B^2 \cdot l^2}{(\mu \cdot \mu_0)^2 \cdot N^2} = \dfrac {1}{2} \cdot \dfrac {B^2}{\mu \cdot \mu_0} \cdot S \cdot l.\)

Так как \(~S \cdot l = V\) - объем катушки, плотность энергии магнитного поля равна

\(\omega_m = \dfrac {B^2}{2\mu \cdot \mu_0},\)

где В - модуль индукции магнитного поля, μ - магнитная проницаемость среды, μ 0 - магнитная постоянная.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. - Мн.: Нар. асвета, 2008. - С. 183-188.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - С. 417-424.

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении