mppss.ru – Все про автомобили

Все про автомобили

Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения. Контроллер заряда аккумулятора Для чего нужен контроллер заряда аккумулятора

Частый вопрос всех новичков о том, какой стоит покупать контроллер на тот или иной аккумулятор. И что значат Амперы в характеристиках контроллера. Давайте в этой теме я вам отдельно постараюсь рассказать, что это за такие амперы. Начнем с того и пожалуй самого главного, что амперы, которые указываются на контроллере, это понятие разное для разных производителей как солнечных, так и контроллеров для ветрогенератора. Все производители трактуют данные по своему, отсюда у многих возникают путаницы и непонятки по выбору контроллера. Ниже я постараюсь привести примеры и способы, как избежать проблем в будущем.

Первое с чего мы начнем это:

  • Контроллер заряда, это устройство, которое контролирует процесс заряда аккумулятора, делятся они на две популярных категории:

1. что такое PWM — это контроллер широтно импульсной модуляции, его задача зарядить аккумулятор импульсами, контролируя уровень напряжения батареи: при этом контроль заряда может осуществляться жестко (иначе говоря якобы в автоматическом режиме). Либо в ручном режиме, где можно выставить в ручную нужные напряжения для заряда АКБ. Читайте инструкции на контроллер. Рекомендую выбирать контроллер с возможностью ручного ввода. И редкость — это контроллеры с предустановленными значениями. Редкость, потому что в настоящее время часто подобные контроллеры идут с возможностью выбора ручного режима. Данный контроллер хорош тем, что для его работы энергия почти не требуется, а потребление подобных контроллеров редко переваливает за 100 мА.

Они меньше привязаны к плохой погоде , и если есть на входе ток хотя бы 10 мА, и напряжение превышает напряжение аккумулятора, контроллер будет заряжать. Так же к плюсам я отнесу недавно выявленный эффект быстрого старения панели, за счет деградации клеток от температуры. С данными контроллерами мощность, снимаемая с панелей, составляет от 0 до 80% по мере заряда АКБ. При этом солнечные панели меньше греются, а элементы даже в самый жаркий день из-за перегрева не страдают деградацией, так как температура не повышается выше +60-70 градусов Цельсия. Из плюсов можно отметить стабильную работу при любой погоде!

2. что такое MPPT — Это контроллер который имеет функцию отслеживания максимальной точки солнечной панели, по русски — это контроллеры ОМТП. По английски — это звучит как maximum power point tracking. Задача данного контроллера выжать все соки из солнечной панели, и при этом получать с солнечной электростанции или ветрогенератора, в зависимости от типа контроллера, всю мощность в пике на что способна ваша система. Звучит замечательно, но так ли это на самом деле, почитать можно . Есть контроллеры которые могут ограничивать ток заряда, но это редкость, нужно читать описание контроллера. Одним из примеров контроллера с ограничением тока заряда, является солнечный контроллер заряда от Сибконтакта СКЗ 40

Итак, что такое ток, который указывается на контроллерах. Опять таки для каждого контроллера, ток который указывается, может иметь абсолютно разное значение, давайте разберем основные:

  • ток может быть указан максимальный — при котором контроллер либо выйдет из строя при долгой нагрузке, либо сработает защита и аккумулятор заряжаться перестанет от контроллера, пока его не перезагрузишь, либо не настанет новый световой день.
  • ток может быть кратковременным или другими словами рекомендуется ниже, но при всплесках контроллер будет продолжать работать.
  • ток может быть указан как ток заряда аккумулятора, то есть выше этого тока не рекомендуется подключать аккумуляторные батареи. Иначе контроллер может не выдержать
  • ток может быть номинальным рекомендованным, но не максимальным, для примера можно отнести сюда старые трейсеры, которые имеют запас по току отдачи, но при этом контроллер хорошо нагревается, так что требуется дополнительное охлаждение.

В большинстве современных контроллеров бюджетного сегмента, ток указывается максимальный, то есть в сумме подключенные источники не должны его пересекать,а и у некоторых даже доходить, иначе срабатывает защита.

Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.

Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.

[ Скрыть ]

Встроенный контроллер

Благодаря техническому прогрессу повышается комфорт обслуживания и поездки на машине. Многие современные автомобили оснащены бортовыми компьютерами. Одна из его функций – показывать напряжение АКБ. Но такая роскошь доступна не всем водителям. На старых моделях порой установлен аналоговый вольтметр, но по его показаниям трудно судить о состоянии зарядки. Поэтому стали производить специальные аккумуляторных батарей. Они выпускаются как встроенными в аккумулятор, так и в виде отдельных устройств, которые подключаются к бортовому компьютеру.

Встроенными индикаторами обычно оснащаются батареи. Они представляют собой поплавковые индикаторы, которые часто называют гидрометрами. По их цвету можно определить степень заряженности АКБ и уровень электролита. Для контроля состояния аккумулятора достаточно индикации одной ячейки. Перед тем, как воспользоваться индикатором, следует слегка постучать по нему. Это необходимо для того, чтобы вышли пузырьки воздуха, которые могут помешать вести наблюдения. Таким образом, можно будет четко видеть цвет индикатора.

При анализе следует учесть то, что когда батарея начинает заряжаться, то плотность электролита увеличивается ближе к электродам. Над электродами повышение плотности происходит за счет диффузии. Индикатор находится над электродами, соответственно будет реагировать на плотность в этой части батареи. Это может стать причиной неточных результатов.

Даже при полной зарядке индикатор может оставаться черного цвета. Объясняется такая ситуация тем, что не успели перемешаться слои электролита большей плотности со слоями меньшей плотности. Процесс диффузии может длиться несколько дней.

Точную зарядку можно определить с помощью тестера.

Конструкция

Схема встроенного индикатора выглядит следующим образом:

Принцип действия

У большинства гидрометров одинаковый принцип действия, он основывается на трех положениях индикатора. Когда заряжается батарея, увеличивается плотность электролита. Благодаря этому зеленый шарик, выполняющий роль поплавка, всплывает по трубке и появляется в глазке индикатора. Обычно поплавок виден, если заряженность батареи превышает 65 %.


Если поплавок тонет в электролите, это означает, что плотность не отвечает норме и АКБ недостаточно заряжена. При этом глазок индикатора будет черного цвета. Такая ситуация говорит о том, что необходима подзарядка.


Существуют модели, в которых кроме зеленого шарика есть красный, поднимающийся по трубке при низкой плотности. В этом случае в глазке будет виден красный шарик.

Последним вариантом является низкий уровень электролита. В этом случае в глазок индикатора будет видна поверхность электролита. Это значит, что необходимо долить электролит или дистиллированную воду. Правда, в случае с необслуживаемым устройством, сделать это сложно.


Заводские контроллеры

Существуют промышленные устройства для контроля уровня . Рассмотрим некоторые из них.

Контроллер уровня зарядки DC-12 В представляет собой конструктор. Он подойдет тем, кто имеет знания по электротехнике. Устройство позволяет контролировать заряженность батареи и выполнять функцию реле-регулятора. Продается в виде набора деталей и собирается самостоятельно. Диапазон напряжений составляет от 2,5 до 18 В. Потребляемый ток – 20 мА. Размеры печатной платы: 43х20 мм (автор видео — DeXter Show).

Панель с индикатором от TMC пригодится автолюбителям, которые установили в свой автомобиль второй аккумулятор. Устройство состоит из алюминиевой панели, вольтметра и тумблера. С помощью тумблера осуществляется переключение между батареями.

Можно приобрести устройства контроля уровня заряда аккумулятора от фирмы Faria Euro Black Style, но у них очень высокая стоимость.

Инструкция по изготовлению

Если есть желание, знания по электронике и время, можно изготовить контроллер . Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.

Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.

Для изготовления контроллера понадобятся следующие детали:

  • для размещения компонент печатная плата;
  • транзисторы: ВС547 и ВС557;
  • резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
  • диоды (стабилизаторы) на 9,1 и 10 В;
  • набор светодиодов RGB (красный, зеленый, синий).

Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера. Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.

Сборка устройства осуществляется по следующей схеме:


При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.

При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:

  • если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
  • если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
  • если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.

Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.

Установка контроллера позволяет контролировать заряженность аккумуляторной батареи, что дает возможность вовремя подзаряжать АКБ и не даст попасть в ситуацию, когда не заводится двигатель из-за разряженной батареи.

Механическая конструкция ветрогенератора в чистом её виде представляет собой только часть полноценной ветряной энергетической установки. Полностью пригодная к эксплуатации система, помимо механической конструкции, имеет ещё ряд электронных узлов.

Так, например, обязательно необходим контроллер для ветрогенератора – устройство, функционально предназначенное для стабилизации параметров заряда АКБ в процессе работы ветряка.

Разберемся, какие функции выполняет прибор и приведем схемы сборки контроллера своими руками. Кроме того, обозначим особенности работы и целесообразность покупки китайского электронного агрегата для ветряка.

Если механический ветряк вполне возможно сделать самостоятельно, можно ли сделать своими руками ещё и контроллер ветряка?

Чтобы иметь какое-то представление о контроллерах ветрогенераторов и успешно воспроизводить такую технику своими руками, не лишними будут базовые сведения об этих приборах.

Контроллер заряда аккумуляторной батареи для ветрогенератора небольшой мощности. Контроль некоторых параметров системы осуществляется через встроенный в конструкцию жк-дисплей

Контроллер, обслуживающий аккумуляторные батареи, призван в первую очередь управлять процессом заряда АКБ. Это его основная функция, но ее условно следует разделить ещё на целый ряд подфункций.

Например, одним функционалом отслеживается ток заряда и ток саморазряда. Другой функционал реализует действия, направленные на измерение температуры и давления. Третий отвечает за компенсацию разницы энергетических потоков, когда одновременно с потреблением тока нагрузкой осуществляется заряд АКБ.

Приборы промышленного изготовления наделены полноценным функционалом. А вот относительно любительских конструкций такого не скажешь. Устройства, выполненные на базе простейших схемных решений в домашних условиях своими руками – это контроллеры, далёкие от совершенных моделей.

Тем не менее, они работают и достаточно продуктивно позволяют эксплуатировать . Как правило, в самодельных конструкциях реализована лишь одна функция – защита от перенапряжения и от глубокой разрядки.

Одна из многочисленных вариаций контроллеров для ветряков, изготовленных своими руками. Такие конструкции отличаются незамысловатыми техническими решениями и простейшим исполнением монтажа

Почему внедрение контроллера в систему ветряка является обязательным моментом?

Потому что в режиме энергетической подпитки АКБ без применения контроллера следует ожидать неприятных последствий:

  1. Деградацию структуры аккумулятора по причине неконтролируемых химических процессов.
  2. Неконтролируемый рост давления и температуры электролита.
  3. Утрату аккумулятором свойств подзарядки в связи с имеющим место долговременным разрядом.

Контроллер заряда для схемы ветрогенераторной установки выполняется, как правило, в виде отдельного электронного модуля. Этот модуль съёмный и быстро отключаемый. Приборы промышленного изготовления обязательно оснащаются индикацией режимов и состояний – световой или визуально передаваемой через дисплей.

На практике могут применяться два вида устройств – встраиваемые непосредственно в корпус ветрогенератора и подключаемые к аккумуляторной батарее.

Схемные решения для сборки своими руками

За всё время с момента появления первых количество схемных решений контроллеров выросло многократно. Многие из схемных разработок далеко не совершенны, но есть и такие варианты, на которые следует обратить внимание.

Для бытового применения, конечно же, актуальными являются простые схемы, требующие небольших финансовых вложений, эффективные и надёжные.

Отталкиваясь от этих требований, начать можно с контроллера для ветрогенератора, созданного на базе реле-регуляторов автомобилей. В схеме применимы как реле с минусовым управляющим контактом, так и реле с плюсовым управляющим контактом.

Этот вариант привлекает малым количеством деталей и простейшим монтажом. Потребуется всего одно реле, один силовой транзистор (полевой), один резистор.

Схема носит название «балластная», так как в ней используется дополнительная нагрузка в виде обычной лампочки накаливания. Таким образом, список деталей пополнится ещё одним элементом – лампой.

Используется автомобильная лампа (или несколько ламп) на 12 вольт в зависимости от мощности системы. Также вместо этого элемента допустимо применять нагрузочное сопротивление иного типа: мощный резистор, электронагреватель, вентилятор и т.п.

Работа «балластной» схемы с минусом

Действие автомобильного реле-регулятора напрямую связано с уровнем заряда аккумуляторной батареи. Если напряжение на клеммах АКБ поднимается выше 14.2 вольт, реле срабатывает и размыкает минусовую цепь силового транзистора.

В свою очередь на транзисторе открывается переход, подключающий лампу прямого накала к аккумулятору. В итоге зарядный ток сбрасывается через нить лампы накаливания. При понижении напряжения на клеммах АКБ – обратный процесс. Так осуществляется поддержка стабильного уровня напряжения батареи.

Как действует «балластная» схема с плюсом

Слегка модернизированным вариантом «балластного» контроллера заряда для ветряка является вторая схема на реле-регуляторе с плюсовым управляющим контактом. Например, подойдут реле от автомобилей марки «ВАЗ».

Отличие от предыдущей схемы – применение твердотельного реле, например, GTH6048ZA2 на ток 60A вместо транзистора. Преимущества очевидны: схема выглядит ещё проще и при этом обладает большей надёжностью и эффективностью.


Ещё одно простейшее схемотехническое решение под сборку контроллера заряда АКБ ветрогенератора. Эффективность и надёжность схемы повышается за счёт применения в ней твердотельного реле (+)

Особенность этого простого решения – прямое аккумулятора генератора ветряка. Проводники контроллера заряда тоже «посажены» непосредственно на контакты аккумулятора.

По факту обе этих части схемы никак не связаны между собой. Напряжение с ветрогенератора подаётся на батарею постоянно. Когда напряжение на клеммах АКБ достигает значения 14.2 Вт, твердотельное реле подключает нагрузку для сброса. Так аккумулятор защищается устройством от перезаряда.

Здесь балластной нагрузкой может выступать не только лампа накаливания. Вполне реально подключить любое иное устройство, рассчитанное на ток до 60 А. Например, электрический трубчатый нагреватель.

Что ещё важно в этой схеме – действие твердотельного реле характеризуется плавно нарастающей амплитудой. По сути, налицо эффект профессионально изготовленного ШИМ-контроллера.

Усложнённый вариант схемы контроллера

Если предыдущий вариант схемного решения контроллера заряда АКБ только лишь напоминает устройство ШИМ (широтно-импульсная модуляция), здесь данный принцип реализуется конкретно.

Эта схема контроллера для ветряка с трёхфазным генератором отличается некоторыми сложностями, так как предполагает использование микросхем – в частности, операционных усилителей на полевых транзисторах в составе сборки TL084.

Однако на монтажной плате всё выглядит не так сложно, как на бумажном листе.


Схемное решение для сборки контроллера своими руками, где используется микросборка TL084. Принцип работы также выстроен с применением реле для переключения режимов, но есть возможность регулировать точки отсечки (+)

Так же, как и в предыдущих решениях, используется реле в качестве коммутационного элемента для балластной нагрузки. Реле рассчитано на работу с 12-вольтовым аккумулятором, но при желании можно подобрать модель на 24 Вт.

Балластный резистор сделан в виде мощного сопротивления (намотка на керамике нихром). Для регулировки рабочего диапазона напряжений (11.5-18 Вт) в схеме используются переменные резисторы, включенные в цепь управления микроэлектронной сборки TL084.

Работает такой контроллер заряда аккумулятора ветряка следующим образом. Трёхфазный ток, полученный от ветрогенератора, выпрямляется силовыми диодами.

На выходе диодного моста образуется постоянное напряжение, которое подаётся на вход схемы через контакты реле, дополнительный диод, аккумулятор и дальше на внутрисхемный стабилизатор (78L08) и на вход сборки TL084.

Момент переключения триггера в одно из состояний определяется значениями переменных резисторов (Low V и High V) нижнего и верхнего порога напряжений.

Пока на клеммах аккумуляторной батареи присутствует напряжение, не превышающее 14.2 вольта (удовлетворяющее значению настройки R High V), выполняется заряд. Как только значения изменяются в сторону увеличения, операционный усилитель TL084 подаёт сигнал на базу транзистора, которым управляется реле.

Реализованный своими руками продукт по схеме с микросборкой TL084. Всё предельно просто, даже вместо качественной печатной платы выбрана плата под навесной монтаж. Такими моментами всегда радуют самодельные конструкции

Происходит срабатывание реле, цепь питания схемы разрывается и замыкается на балластный резистор. Сброс по балласту проходит до момента разряда аккумулятора, близкого к значению настройки переменного резистора Low V.

Как только это значение достигнуто, вторым операционным усилителем TL084 схема переключается в обратное состояние. Так осуществляется работа контроллера.

Китайская электронная альтернатива

Изготовление контроллера ветрогенератора своими руками – дело престижное. Но учитывая скорость развития электронных технологий, нередко смысл самостоятельной сборки теряет свою актуальность. К тому же большая часть предлагаемых схем уже морально устарела.

Получается дешевле купить уже готовый продукт, сделанный профессионально, с высоким качеством монтажа, на современных электронных компонентах. Например, приобрести подходящее устройство по разумной стоимости можно на Aliexpress.

Ассортимент предложений на китайском сайте впечатляет. Контроллеры для ветрогенераторов под различный уровень мощности продаются по цене от 1000 руб. Если отталкиваться от этой суммы, в плане сборки аппарата своими руками игра явно не стоит свеч.

Так, например, среди предложений китайского портала есть модель для 600-ваттного ветряка. Устройство стоимостью 1070 руб. пригодно для работы с аккумуляторами 12/24 вольта, в режиме рабочего тока до 30 А.


Вполне приличный, рассчитанный на 600-ваттный ветрогенератор, контроллер заряда в китайском исполнении. Такое устройство можно заказать из Китая и получить через почту примерно за месяц-полтора

Качественный всепогодный корпус контроллера размерами 100х90 мм оснащён мощным радиатором охлаждения. Исполнение корпуса соответствует классу защиты IP67. Диапазон внешних температур от – 35 до +75ºС. На корпусе выведена световая индикация режимов состояния ветрогенератора.

Спрашивается, какой резон тратить время и силы на сборку простенькой конструкции своими руками, если есть реальная возможность купить нечто подобное и технически серьёзное?

Ну а если этой модели недостаточно, у китайцев имеются варианты совсем «крутые». Так, среди новых поступлений отметилась модель мощностью 2 кВт под рабочее напряжение 96 вольт.

Китайский продукт из списка нового прихода. Обеспечивает контроль заряда батарей, работая в паре с ветрогенератором мощностью 2 кВт. Принимает на входе напряжение до 96 вольт

Правда, стоимость этого контроллера уже в пять раз дороже предыдущей разработки. Но опять же, если соизмерять затраты на производство нечто подобного своими руками, покупка выглядит рациональным решением.

Единственное что смущает в китайских продуктах – они имеют свойство неожиданно прекращать работу в самых неподходящих случаях. Поэтому купленное устройство часто приходится доводить до ума – естественно, своими руками. Но это значительно легче и проще, чем делать контроллер заряда ветрогенератора своими руками с нуля.

Для любителей самоделок на нашем сайте есть серия статей, посвященная изготовлению ветрогенераторов:

Выводы и полезное видео по теме

Желание сделать оборудование для домашнего применения своими руками иногда сильнее более простого решения – покупки недорогого устройства. Что из этого получилось, смотрите в видеоролике:

Оценивая перспективы изготовления электроники собственными силами независимо от её назначения, приходится столкнуться с мыслью, что век «самоделкиных» завершается.

Рынок перенасыщен готовыми электронными устройствами и модульными комплектующими практически под каждый бытовой продукт. Электронщикам-любителям теперь остаётся единственное дело – заниматься сборкой домашних конструкторов.

Есть, что дополнить, или возникли вопросы по теме сборки и использования контроллеров для ветрогенератора? Можете оставлять комментарии, задавать вопросы и добавлять фотографии своих самоделок – форма для связи находится в нижнем блоке.

Недорогой и простой в эксплуатации контроллер разработан специально для встраивания в аккумуляторные системы. Контроллер "прощает" ошибки при подключении, переполюсовка питания и аккумулятора не выведут из строя как сам аккумулятор, так и контроллер, минимум органов управления и индикации позволяет использовать контроллер даже любителю. Контроллер имеет два клеммника для удобства подключения источника питания и аккумулятора и два светодиода статуса для отображения состояния.


Технические характеристики

Описание работы

Контроллер работает в режиме постоянной подзарядки (буферный режим), подстроечный резистор на плате контроллера позволяет выставить напряжение окончания заряда в диапазоне от 13,4 до 13,9 вольт. Буферный режим заряда наиболее оптимален для продления срока эксплуатации аккумулятора, так как аккумулятор большую часть времени находится в максимально заряженном состоянии.


Для максимального срока эксплуатации аккумулятора цикл заряда должен длиться не менее 8-16 часов. Как правило, эта информация указывается производителями на аккумуляторе. Время заряда контроллером зависит от ёмкости аккумулятора.

Контроллер заряда имеет два светодиода. Зеленый светодиод информирует о том, что в данный момент происходит заряд аккумулятора. Контроллер автоматически определяет необходимый ток заряда. В процессе заряда, с приближением напряжения аккумулятора до установленного, ток заряда снижается. При снижении зарядного тока менее определённого уровня (см. параметр “Отключение индикации заряда при токе менее” в таблице Технические характеристики), зелёный светодиод отключается.


Красный светодиод информирует о том, что аккумулятор подключен в обратной полярности, заряд при этом не происходит.


При отключении питающего напряжения разряд аккумулятора через модуль не происходит.

Подключенный к зарядному устройству аккумулятор, с остаточным напряжением менее 10 В, контроллер определяет как неисправный и заряд не происходит.

При питании модуля от низкочастотного трансформатора с диодным мостом, на выход диодного моста необходимо установить конденсатор емкостью не менее 1000 мкФ.

С использованием нескольких модулей SCD0049 можно конструировать системы заряда для группы последовательно включенных аккумуляторов, без дополнительной схемы балансировки, при условии питания модулей от отдельных гальванически развязанных источников питания.

Встречайте наши новинки!

SCD0049-0.4A - Контроллер заряда 12 В свинцового аккумулятора

SCD0049-0.7A - Контроллер заряда 12 В свинцового аккумулятора

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда .

Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).


Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему . Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении