mppss.ru – Все про автомобили

Все про автомобили

Линейная и угловая скорость колеса. Что такое угловая скорость и как ее рассчитывают? Смотреть что такое "Угловая скорость" в других словарях

Вращательное движение вокруг неподвижной оси - еще один частный случай движения твердого тела.
Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, называемой осью вращения, при этом плоскости, которым принадлежат эти окружности, перпендикулярны оси вращения (рис.2.4 ).

В технике такой вид движения встречается очень часто: например, вращение валов двигателей и генераторов, турбин и пропеллеров самолетов.
Угловая скорость . Каждая точка вращающегося вокруг оси тела, проходящей через точку О , движется по окружности, и различные точки проходят за время разные пути. Так, , поэтому модуль скорости точки А больше, чем у точки В (рис.2.5 ). Но радиусы окружностей поворачиваются за время на один и тот же угол . Угол - угол между осью ОХ и радиус-вектором , определяющим положение точки А (см. рис.2.5).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени поворачивается на одинаковые углы. Быстрота вращения тела зависит от угла поворота радиус-вектора, определяющего положение одной из точек твердого тела за данный промежуток времени; она характеризуется угловой скоростью . Например, если одно тело за каждую секунду поворачивается на угол , а другое - на угол , то мы говорим, что первое тело вращается быстрее второго в 2 раза.
Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела к промежутку времени , за который этот поворот произошел.
Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость выражается в радианах в секунду (рад/с).
Например, угловая скорость вращения Земли вокруг оси равна 0,0000727 рад/с, а точильного диска - около 140 рад/с 1 .
Угловую скорость можно выразить через частоту вращения , т. е. число полных оборотов за 1с. Если тело совершает (греческая буква «ню») оборотов за 1с, то время одного оборота равно секунд. Это время называют периодом вращения и обозначают буквой T . Таким образом, связь между частотой и периодом вращения можно представить в виде:

Полному обороту тела соответствует угол . Поэтому согласно формуле (2.1)

Если при равномерном вращении угловая скорость известна и в начальный момент времени угол поворота , то угол поворота тела за время t согласно уравнению (2.1) равен:

Если , то , или .
Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твердого тела, и осью ОХ увеличивается, и отрицательные, когда он уменьшается.
Тем самым мы можем описать положение точек вращающегося тела в любой момент времени.
Связь между линейной и угловой скоростями . Скорость точки, движущейся по окружности, часто называют линейной скоростью , чтобы подчеркнуть ее отличие от угловой скорости.
Мы уже отмечали, что при вращении твердого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.
Между линейной скоростью любой точки вращающегося тела и его угловой скоростью существует связь. Установим ее. Точка, лежащая на окружности радиусом R , за один оборот пройдет путь . Поскольку время одного оборота тела есть период T , то модуль линейной скорости точки можно найти так:

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Обычно, когда говорят о перемещении, мы представляем себе объект, который движется по прямой. Скорость такого движения принято называть линейной, и расчёт ее средней величины выполняется просто: достаточно найти отношение пройденного расстояния к времени, за которое оно было телом преодолено. Если же объект перемещается по окружности, то в этом случае уже определяется не линейная, а Что это за величина и как ее рассчитывают? Об этом как раз и пойдет разговор в данной статье.

Угловая скорость: понятие и формула

Когда движется по окружности, быстроту ее перемещения можно характеризовать величиной угла поворота радиуса, который соединяет движущийся объект с центром данной окружности. Понятно, что эта величина в зависимости от времени постоянно меняется. Быстрота, с которой этот процесс происходит, и есть не что иное, как угловая скорость. Другими словами, это отношение величины отклонения радиус-вектора объекта к промежутку времени, которое потребовалось объекту на совершение такого поворота. Формула угловой скорости (1) может быть записана в таком виде:

w = φ / t, где:

φ - угол поворота радиуса,

t - период времени вращения.

Единицы измерения величины

В международной системе общепринятых единиц (СИ) для характеристики поворотов принято использовать радианы. Поэтому 1 рад/с - основная единица, которая используется в расчетах угловой скорости. В то же время никто не запрещает применять градусы (напомним, что один радиан равен 180/пи, или 57˚18’). Также угловая скорость может выражаться в числе оборотов за минуту или за секунду. Если перемещение по окружности происходит равномерно, то данная величина может быть найдена по формуле (2):

где n - частота вращения.

В противном случае подобно тому, как это делают для обычной скорости, рассчитывают среднюю, или мгновенную угловую скорость. Следует отметить, что рассматриваемая величина является векторной. Для определения ее направления обычно используют которое часто применяется в физике. Вектор угловой скорости направлен в ту же сторону, в которую происходит винта с правой резьбой. Другими словами, он устремлен вдоль оси, вокруг которой вращается тело, в ту сторону, откуда вращение видно происходящим против движения часовой стрелки.

Примеры расчета

Предположим, требуется определить, чему равна линейная и угловая скорость колеса, если известно, что его диаметр равен одному метру, а угол вращения изменяется в соответствии с законом φ=7t. Воспользуемся нашей первой формулой:

w = φ / t = 7t / t = 7 с -1 .

Это и будет искомая угловая скорость. Теперь перейдем к поиску привычной нам быстроты перемещения. Как известно, v = s / t. Учитывая, что s в нашем случае - это колеса (l =2π*r), а 2π - один полный оборот, получается следующее:

v = 2π*r / t = w * r = 7 * 0.5 = 3.5 м/с

Вот еще одна задачка на эту тему. Известно, что на экваторе равен 6370 километров. Требуется определить линейную и угловую быстроту движения точек, находящихся на этой параллели, которое возникает в результате вращения нашей планеты вокруг своей оси. В данном случае нам понадобится вторая формула:

w = 2π*n = 2*3,14 *(1/(24*3600)) = 7,268 *10 -5 рад/с.

Осталось выяснить, чему равна линейная скорость: v = w*r = 7,268 *10 -5 *6370 * 1000 = 463 м/с.

Расстояние и время, которое уходит на преодоление этого расстояния, связывает физическое понятие – скорость. И у человека, как правило, не вызывает вопросов определение этой величины. Все понимают, что двигаться на автомобиле со скоростью 100 км/ч - значит за один час проехать 100 километров.

А как быть, если тело вращается? Например, обычный бытовой вентилятор делает с десяток оборотов в секунду. И в то же время скорость вращения лопастей такова, что их запросто можно остановить рукой без вреда для себя. Земля вокруг своей звезды – Солнца - делает один оборот за целый год, а это более 30 миллионов секунд, но скорость её движения по околозвёздной орбите составляет около 30 километров за одну секунду!

Как же связать привычную скорость с быстротой вращения, как выглядит формула угловой скорости?

Понятие угловой скорости

Понятие угловой скорости используется в изучении законов вращения. Оно применяется ко всем вращающимся телам. Будь то вращение некоторой массы вокруг другой, как в случае с Землёй и Солнцем, или же вращение самого тела вокруг полярной оси (суточное вращение нашей планеты).

Отличие угловой скорости от линейной в том, что она фиксирует изменение угла, а не расстояния в единицу времени. В физике угловую скорость принято обозначать буквой греческого алфавита «омега» - ω.

Классическая формула угловой скорости вращения рассматривается так.


Представим, что вокруг некоторого центра А вращается физическое тело с постоянной скоростью. Его положение в пространстве относительно центра определяется углом φ. В некоторый момент времени t1 рассматриваемое тело находится в точке В. Угол отклонения тела от начального φ1.

Затем тело перемещается в точку С. Оно находится там в момент времени t2. Время, понадобившееся для данного перемещения:

∆t = t2 – t1.

Меняется и положение тела в пространстве. Теперь угол отклонения равен φ2. Изменение угла за период времени ∆t составило:

∆φ = φ2 – φ1.

Теперь формула угловой скорости формулируется следующим образом: угловая скорость определяется как отношение изменения угла ∆φ за время ∆t.

Единицы измерения угловой скорости

Скорость движения тела линейная измеряется в разных величинах. Движение автотранспорта по дорогам привычно указывают в километрах в час, морские суда делают узлы – морские мили в час. Если же рассматривать движение космических тел, то тут чаще всего фигурируют километры в секунду.

Угловая скорость в зависимости от величины и от предмета, который вращается, также измеряется в разных единицах.

Радианы в секунду (рад/с) – классическое мерило скорости в международной системе единиц (СИ). Показывают – на сколько радиан (в одном полном обороте 2 ∙ 3,14 радиан) успевает повернуться тело за одну секунду.

Обороты в минуту (об/мин) – самая распространённая единица для обозначения скоростей вращения в технике. Валы двигателей как электрических, так и автомобильных выдают именно (достаточно посмотреть на тахометр в своём автомобиле) обороты в минуту.

Обороты в секунду (об/с) – используется реже, прежде всего в образовательных целях.

Период обращения

Иногда для определения скорости вращения удобнее пользоваться другим понятием. Периодом обращения принято называть время, за которое некое тело делает оборот 360° (полный круг) вокруг центра вращения. Формула угловой скорости, выраженная через период обращения, принимает вид:

Выражать периодом обращения быстроту вращения тел оправдано в случаях, когда тело вращается относительно медленно. Вернёмся к рассмотрению движения нашей планеты вокруг светила.


Формула угловой скорости позволяет вычислить её, зная период обращения:

ω = 2П/31536000 = 0,000000199238499086111 рад/с.

Глядя на полученный результат, можно понять, почему, рассматривая вращение небесных тел, удобнее пользоваться именно периодом обращения. Человек видит перед собой понятные цифры и наглядно представляет себе их масштаб.

Связь угловой и линейной скоростей

В некоторых задачах должны быть определены линейная и угловая скорость. Формула трансформации проста: линейная скорость тела равняется произведению угловой скорости на радиус вращения. Как это показано на рисунке.


«Работает» выражение и в обратном порядке, с его помощью определяется и угловая скорость. Формула через скорость линейную получается путём несложных арифметических манипуляций.

Угловая скорость

ОПРЕДЕЛЕНИЕ: Вращательным движением будем называть такое движение, при котором все точки абсолютно твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью вращения.

В качестве координаты, определяющей положение точки при вращательном движении, берут угол, характеризующий мгновенное положение радиус-вектора, проведенного из центра вращения к рассматриваемой точке (рис. 2.14)

Для характеристики вращательного движения вводится понятие угловой скорости

.

Вектор направлен вдоль оси, вокруг которой вращается тело в сторону, определяемую правилом правого винта (рис. 2.15).

Модуль вектора угловой скорости равен . Если = const, то такое движение называется равномерным, при этом , следовательно и при t 0 = 0 получаем .

Если j 0 = 0, то j = w·t или .

Таким образом, при равномерном движении w показывает на какой угол поворачивается тело за единицу времени. Размерность угловой скорости [w ]=рад/сек.

Равномерное вращение можно характеризовать периодом вращения T, под которым понимают время, за которое тело делает один полный оборот, т.е. поворачивается на угол 2p. В этом случае , следовательно .

Частота вращения (число оборотов в единицу времени): n=1/T=w/2p. Отсюда w=2pn.

Дополнение 1.

Поворот тела на некоторый малый угол dj можно задать в виде отрезка, длина которого равна dj, а направление совпадает с осью, вокруг которой совершен поворот. Таким образом, повороту тела можно приписать некоторое численное значение и направление. При этом направление вектора можно определить, связав его с направлением вращения тела. Такие вектора называются аксиальными или псевдовекторами, в отличие от истинных или полярных векторов, для которых направление определяется естественным образом ( , , и т. д.), при операции инверсии системы координат(x → -x’, y → -y’, z → -z’) последние меняют знак на противоположный: .

Вращательное движение и угловая скорость твердого тела

В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.

Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.

За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек - сложно.

Угловое перемещение

Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:

φ = φ(t).

Угловая скорость и угловое ускорение

Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.

Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.

Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.

Вращательное движение тела характеризуется еще одной физической величиной - угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с2.

Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.

Равномерное вращательное движение

Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0, ω = const, φ = φ 0 + ωt, где φ 0 – начальное значение угла поворота.

Равноускоренное вращательное движение

Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const, ω = ω 0 + εt, φ = φ 0 + ω 0 t + εt2/2.

Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑ ц = v2/R = (ωR)2/R = ω2R.

Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑ t = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.

Момент сил

Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.


Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α - угол между векторами R и F . Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M 1 + M 2 + …+ M n .

Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ, RF = Rma = R2mβ, β= M/mR2 = M/I, где I = mR2 - момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.

Примеры решения задач

Задача 1. Ротор центрифуги делает 2 104 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.

Решение

Найдем угловое ускорение, учитывая, что угловая скорость при равноускоренном движении описывается уравнением: ω(t) = ω 0 - εt.

Отсюда, учитывая, что в конце движения скорость равна нулю, найдем: ε = ω 0 /t = 2πn/t.

Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с) , получим: ε = 2π333/480 = 4,36(рад/с2).

Угол поворота ротора центрифуги за время t будет: φ(t)= φ 0 + ω 0 t + εt2/2. У читывая выражение для углового ускорения и то, что φ 0 = 0 , находим: φ(t)= ω 0 t/2 = πnt.

Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8 104 (об.).

Ответ: угловое ускорение равно 4,36 рад/с2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8 104 об.

Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.

Решение

Найдем тормозной момент сил, действующий на диск: M = RF.

Найдем угловое ускорение диска: ε = M/I = FR/mR2 = F/mR.

Найдем время, за которое диск остановится: t = ω 0 /ε , где ω 0 - начальная угловая скорость диска, которая равна 2πv.

Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28 2 1 0,2/10 = 2,5 (с).

Ответ: время остановки равно 2,5 с.

Определение линейных скоростей всех точек механизма и угловых скоростей звеньев

Исходные данные:

центры масс всех звеньев лежат посредине длинны.

Линейные скорости точек и угловые скорости звеньев необходимы для вычисления кинетической энергии механизма, определения его инертных свойств. Скорости могут быть определены различными способами, из которых наиболее распространены два способа: при помощи МЦС и метод планов скоростей.

    При помощи МЦС

Определим угловую скорость вращения кривошипа:

Определим линейную скорость точки А:

Вектор направлен перпендикулярно звену АB по направлению .

Звено СD совершает вращательное движение, значит скорость точки C направлена перпендикулярно звену СD. Для звена ВC, совершающего плоскопараллельное движение, находим МЦС. Для этого восстанавливаем перпендикуляры к направлениям скоростей и . Их пересечение является МЦС звена ВC (Р 2). На звене отмечаем середину – точку S 2 – и соединяем с полюсом Р 2 . Угловая скорость звена 2 будет описываться соотношением:

Где BР 2 =800 мм (замеряем на чертеже);

CР 2 = 648 мм, S 2 P 2 =694 мм.

Учитывая масштаб построения, имеем:

Определяем скорости:

Определяем скорость :

Угловая скорость звена CF:

Далее определяем МЦС для звена 4. Учитывая, что ползун 5 движется только горизонтально, восстанавливаем перпендикуляры к направлениям скоростей и , и получаем точку Р 4 удалённую на значительное растояние

Для определения направления скорости соединяем точкуS 2 с МЦС Р 2 прямой.

Восстанавливаем перпендикуляр в точке S 2 к прямым.

    Метод планов скоростей.

Определяем скорость точки B:

Вычисляем масштаб плана скоростей:


Выбираем на чертеже полюс p плана скоростей и изображаем скорость отрезком Рb=6.96 мм. Скорость перпендикулярна звену АB и направлена по ω 1 .

Точка C принадлежит одновременно звеньям ВC и СD. Определение скорости точки C проводим по следующим векторным формулам:


(перпендикулярна CB)


(перпендикулярна CD)

На плане скоростей через точку b проводим прямую, перпендикулярную звену ВC, а из полюса р (так как точка D неподвижна) – прямую перпендикулярно СD. На пересечении этих прямых получаем точку c. На середине отрезка вc отмечаем точку S 2 и соединяем ее с полюсом р.Скорость противоположна по направлению скорости , а Скорость точки E находим по векторному уравнению:


(перпендикулярна FE)

Параллельна Y-Y

Решаем графически уравнение.

Через точку F проводим прямую, перпендикулярную FE, а через полюс р - прямую, параллельную Y-Y. Точка пересечения этих прямых и будет e.

На середине ed имеем точку S 4 , соединив которую с полюсом р, получим план скоростей.

Из плана скоростей имеем линейные скорости:

Угловые скорости звеньев:

Направление ω 2 определим, перенося вектор в точкуC и рассматривая вращение точки C относительно точки B. аналогично определяем направления угловых скоростей ω 4 и ω 3 .

По МЦС скорость V F =0.397м/с.

По планам скоростей скорость V F =0.396 м/с.

Расхождение результатов:

Определение линейных ускорений точек и угловых скоростей механизма

Ускорения точек и их звеньев определяют при вычислении сил инерции:

а) графоаналитический способ:

Ускорение точки B складывается из касательного и нормального ускорений:



Согласно теореме об ускорения точек плоской фигуры:



Ускорение точки D=0. Приравниваем правые части равенств:

Определяем нормальные ускорения:

Для определения касательных ускорений спроектируем векторное равенство (*) на оси ВХ и ВУ, взяв соответствующие значения углов с чертежа. Обозначим

,



Определяем ускорение точки C:


Определение ускорения центра масс

:


Нормальное ускорение определим через угловую скорость звена 2:

Касательное ускорение определим:


,где:

проектируем векторное равенство на оси СХ и СУ.

Ускорение точки

определится:

Угловое ускорение:

б) метод плана ускорений:

Определяем полное ускорение



так как

Вектор нормального ускорения направлен к центру вращения, т.е. от точкиB к A.

Точка C принадлежит одновременно звеньям ВC и СD. Рассматривая движение точки C по отношению к центрам B и D, запишем:


(перпендикулярно BC)


(перпендикулярно CD)

Вычислим нормальные составляющие:

Ускорение изобразим отрезком

=

мм. Тогда масштаб определиться:

Вектор

направлен параллельно ВC от C к B. Вектор

направлен параллельно СD от C к D. Направления тангенциальных ускорений указаны в скобках.

Теперь векторное уравнение можно решить графически. В соответствии с первым уравнением из n 1 в направлении от C к B откладываем отрезок

Через точку n 2 проводим прямую, перпендикулярную ВC (направление

). В соответствии со вторым векторным уравнением из точки (так как

) параллельно СD в направлении от C к D откладываем отрезок

Через точку n 3 проводим прямую перпендикулярную СD (направление

). Отрезок

изображает ускорение точкиC. Точка S 2 находится на середине отрезка вc.

Ускорение точки F определиться:

Ускорение точки E определиться:


Определим

На плане ускорений

Графически решаем записанные выше уравнения. Из точки F откладываем отрезок

параллельноFE от E к F. Через точку n 4 проводим прямую, перпендикулярную FE, до пересечения с фронталью. Точку S 4 находим по методу подобия. Она лежит на середине отрезка fe.

Из плана ускорений имеем:

Угловые ускорения звеньев определим



Перенося вектор

в точкуC звена 2, определим направление . Аналогично для остальных звеньев.

Расхождение результатов:

По графическому способу

По плану ускорений

Что такое угловая скорость?

Что такое угловая скорость в дизайне? И как ее смотреть и почему на нее надо внимание обращать?

[ Sergio ]

Углова́я ско́рость - векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Виктор поплевко

Углова́я ско́рость - векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:
,
а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.
Единица измерения угловой скорости, принятая в системах СИ и СГС) - радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, - физически безразмерен, поэтому физическая размерность угловой скорости - просто ) . В технике также используются обороты в секунду, намного реже - градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту - это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.
Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью определяется формулой:

Где - радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.
В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения») , угловая скорость тела всегда перпендикулярна этой плоскости, и по сути - если плоскость вращения заведомо известна - может быть заменена скаляром - проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.
Производная угловой скорости по времени есть угловое ускорение.
Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю) .


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении