mppss.ru – Все про автомобили

Все про автомобили

Построить линию пересечения плоскостей определить видимость. Прямая как линия пересечения плоскостей. Пересечение двух плоскостей общего положения

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра технической механики

ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ

ПОВЕРХНОСТЕЙ

Учебнометодическое пособие к решению домашнего задания № 3

для бакалавров всех специальностей

Стерлитамак 2011

Перед работой с методическими указаниями бакалавр обязан изучить материал по рекомендуемой литературе

Составители Валитова Э.Г., ст.преподаватель

Рецензент Иванов С.П., доц., канд. техн. наук

© Уфимский государственный нефтяной технический университет, 2011

Методические указания предназначены для бакалавров всех специальностей при изучении темы "Взаимное пересечение поверхностей" и выполнении домашнего графического задания по этой теме.

Перед работой с методическими указаниями бакалавр обязан изучить материал по рекомендуемой литературе.

1.1 Целью задания является изучение способов построения линии пересечения поверхностей.

а) построить проекции линий пересечения заданных поверхностей способом плоскостейпосредников (формат A3);

б) построить проекции линий пересечения поверхностей способом сферических посредников (формат A3);

в) отметить характерные точки линий пересечения.

Варианты индивидуальных заданий приведены в приложении.

2 МЕТОДИКА И ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

2.1 Произвести разметку (компоновку) формата, предусматривая рациональное использование поля чертежа.

2.2 Вычертить в тонких линиях карандашом исходные данные задачи, вспомогательные линии построения, найденную линию пересечения поверхностей.

2.3 Заполнить основную надпись (содержание и размеры приведены на рис.1)

Рис. 1. Основная надпись

2.4 Работа, выполненная в тонких линиях, должка быть представлена на проверку преподавателю.

2.5 После проверки произвести обводку чертежа, исходя из следующих требований:

2.5.1 Данные элементы выполняются черным цветом карандашом, тушью или пастой сплошной основной линией (S1 мм).

2.5.2 Линии проекционной связи и оси проекций выполняются черным цветом сплошной тонкой линией карандашом, тушью или пастой (S0,5 мм).

2.5.3 Линии вспомогательных построений, выполняются зеленым или синим цветом сплошной тонкой линией (S0,5 мм) также карандашом, тушью или пастой.

2.5.4 Искомые элементы выполняются сплошной основной линией красного цвета (карандаш, тушь, паста, фломастер,S1 мм),Sтолщина линии.

2.6 Представить работу для защиты. Защита работы фиксируется подписью преподавателя в графе «Принял» и сопровождается соответствующей оценкой, проставляемой в виде дроби: числитель оценка за глубину изучения темы, знаменательоценка за качество графического исполнения чертежа.

3 ОБЩИЕ СВЕДЕНИЯ

Линия пересечения поверхностей это кривая, состоящая из точек, принадлежащих обеим поверхностям. Она представляет собой в общем случае пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми. Обычно линию пересечения строят по ее отдельным точкам.

Общим способом построения этих точек является способ поверхностей посредников. Пересекая данные поверхности некоторой вспомогательной поверхностью и определяя линии пересечения ее с данными поверхностями, в пересечении этих линий получим точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностейпосредников применяют плоскости или сферы, в зависимости от чего различают следующие способы построения точек линии пересечения двух поверхностей:

а) способ вспомогательных плоскостей;

б) способ вспомогательных сфер.

Применение того или иного способа построения линии пересечения поверхностей зависит как от типа данных поверхностей, так и от их взаимного расположения.

4 СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ

ЧАСТНОГО ПОЛОЖЕНИЯ

При нахождении точек линии пересечения поверхностей необходимо соблюдать определенную последовательность. У линии пересечения различают точки опорные (характерные) и промежуточные (случайные). В первую очередь определяют опорные точки, т.к. они позволяют видеть, в каких пределах расположены проекции линии пересечения и где необходимо изменять положение вспомогательных поверхностейпосредников.

К опорным точкам относят точки, лежащие на очерках поверхностей, высшие и низшие точки, ближайшие к наблюдателю и наиболее удаленные от него, крайние левые и правые.

Способ вспомогательных плоскостей следует применять тогда, когда обе пересекающиеся поверхности возможно пересечь по графически простым линиям (окружностям или прямым) некоторой совокупностью проецирующих плоскостей (или, в частном случае, совокупностью плоскостей уровня).

На рис. 2 показано построение линии пересечения горизонтально проецирующего цилиндра с конусом вращения. Опорные точки 1 и 2 определены при пересечении главных меридианов обеих поверхностей, находящихся в плоскости симметрии. Случайные точки 3, 3 1 4, 4 1 находят с помощью горизонтальных плоскостей уровняS 1 иS 2 , пересекающих обе поверхности по окружности. Фронтальная проекция линии пересечения строится по законам проекционной связи.

На рис. 3 построена линия пересечения конуса вращения со сферой. Опорные точки линии пересечения 1 и 2 определяются сразу, как и в предыдущем случае, при пересечении очерковых образующих (главных меридианов). Случайные точки 5, 5 1 находят с помощью горизонтальной плоскости уровняS 3 . Точки видимости 4 и 4 1 определяет плоскостьS 1 , пересекающая сферу по экватору. Точки 4 и 4 1 разделяют горизонтальную проекцию линии пересечения на видимую и невидимую части. Для построения двух крайних левых точек 3 и 3 1 необходимо из точки 0 (0 / , 0) пересеченияосей конуса и шара опустить перпендикуляр на образующую конуса и через точку К / провести плоскостьS 2 .

В пересечении соответствующих окружностей получаются точки 3 и 3 1  крайние левые. Проведя ряд вспомогательных плоскостей, можно получить какое угодно количество случайных точек, уточняющих форму линии пересечения.

Рис. 2. Построение линии пересечения цилиндра и конуса

Рис. 3. Построение линии пересечения конуса и сферы

5 СПОСОБ СФЕРИЧЕСКИХ ПОСРЕДНИКОВ

Сферические посредники нашли широкое применение в решении задач на взаимное пересечение поверхностей. Обуславливается это тем, что:

а) проекции сферы строятся чрезвычайно просто;

б) на сфере может быть взято бесчисленное множество семейств окружностей;

в) любая плоскость, проходящая через центр сферы, является плоскостью ее симметрии,

В основе метода сферических посредников лежит следующая теорема: "Две соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения их главных меридианов". Пусть заданы две соосные поверхности вращенияФ и ψрис, 4), их главные меридианы а / и b / . Общие точки этих меридианов 2. и 1 образуют при вращении окружности, которые являются общими для данных поверхностей. Эти окружности проецируются на фронтальную плоскость проекций в виде прямых, перпендикулярных к оси вращения, а на горизонтальную плоскостьв натуральную величину. Любое другое поясное сечение, например, плоскостью S, даст две окружности разных диаметров.

В способе сферических посредников в качестве одной из соосных поверхностей берутся сферы, а в качестве второйлюбая поверхность вращения, например, конус, цилиндр, шар, эллипсоид и гиперболоид вращения и др.

Рис. 4. Соосные поверхности

В этом случае указанная теорема получает следующую формулировку: "Если центр секущей сферы находится на оси поверхности вращения, то сфера пересекает данную поверхность по окружности" (рис.5).

Рис. 5. Сфера, соосная поверхностям вращения

Во всех случаях сфера пересекается с поверхностью вращения по окружностям равных или разных диаметров, которые проецируются в прямые линии, перпендикулярные к оси поверхности вращения. Способ сферических посредников имеет две разновидности:

а) способ концентрических сфер, когда сферыпосредники строятся из одного и того же центра;

б) способ эксцентрических сфер, когда посредники строятся из различных центров.

Для решения задач первым способом необходимы следующие условия:

l) обе заданные поверхности должны быть поверхностями вращения;

2) оси обеих поверхностей должны пересекаться между собой и лежать в общей плоскости симметрии.

Для решения задач вторым способом (эксцентрических сфер) условия несколько иные, а именно:

1) одна из пересекающихся поверхностей должна быть поверхностью вращения, а втораянести на себе семейство круговых сечений;

2) обе поверхности должны иметь общую плоскость симметрии, на которую круговые сечения проецируются в виде прямых линий.

На рис.6 показано определение линии пересечения двух поверхностей вращения (конуса и цилиндра) способом концентрических сфер. План решения задачи следующий:

1) принимают точку пересечения осей поверхностей 0 (0 / , 0) за центр, проводят вспомогательные сферыпосредники;

2) определяют окружности пересечения сферпосредников с каждой из заданных поверхностей в отдельности;

3) находят точки пересечения полученных окружностей, эти точки принадлежат искомой линии пересечения поверхностей.

Начинают построение с определения опорных точек  точек пересечения очерковых образующих 1 и 2. Далее определяют значение радиуса наибольшей и наименьшей сферыпосредника; R макс равен расстоянию от центра 0 до наиболее удаленней точки пересечения очерковых образующих, Для определения радиуса наименьшей сферыпосредника R мин. из центра 0 / опускают нормали 0 / К / и 0 / Т / на очерковые образующие обеих поверхностей. Величина большей из нормалей и является радиусом наименьшей сферыпосредника. Эта наименьшая вспомогательная сфера даёт еще одну опорную точкуточку 5, которая является точкой крайнегопрогиба, вершиной кривой линии пересечения. Остальные точки строятся с помощью промежуточных сфер, радиус которых берется в пределах R мин

Рис. 6. Построение линии пересечения с помощью

концентрических сфер

Рис. 7. Построение линии пересечения с помощью

эксцентрических сфер

На рис.7 построена линия пересечения конуса, ось которого перпендикулярна горизонтальной плоскости, и четверти тора, ось вращения которого перпендикулярна фронтальной плоскости проекций. Для решения использовался способ эксцентрических сферпосредников. Решение задачи начинают с определения точек пересечения очерковых образующих обеих поверхностей. Точки 1,2,3.определяются непосредственно с чертежа фронтальной проекции, а точка 4 пересечения оснований поверхностей найдена на горизонтальной проекции. Для построения промежуточных точек линии пересечения рассекают торовую поверхность плоскостями, проходящими через ось тора. В сечении получают окружности. Например, плоскостьS 1 пересекает тор по окружности диаметраа / b / . Из центра этой окружности точки К / восстанавливают перпендикуляр до пересечения с осью конуса в точке 0 / 1 . Принимая эту точку за центр, строят вспомогательную сферупосредник радиусом 0 / 1 а / (0 / 1 b /). Эта сфера пересекает тор по известной уже окружностиа / b / ,а конуспо окружности 8 / 9 / . Взаимное их пересечение дает точку 5 линии пересечения. Аналогично с помощью плоскостейS 2 иS 3 найдены точки 6 и 7.

Приложение

ЛИТЕРАТУРА

1. Нартова Л.Г. Начертательная геометрия: Учеб. М.: Академия, 2011.

2. Гордон В.О. Начертательная геометрия. – М.: Высш. шк., 2002.

3. Гордон В.О. Сборник задач по курсу начертательной геометрии. – М.: Высш. шк., 2003.

4. Дегтярев В.М. Инженерная и компьютерная графика: Учеб. М.: Академия, 2011.

5. Потёмкин А. Инженерная графика. М.: Высш. шк., 2002.

2. Методика и порядок выполнения задания. . . . . . . 1

3. Общие сведения. . . . . . . . . . . . . . . . . . 2

4. Способ вспомогательных плоскостей частного положения 3

5. Способ сферических посредников. . . . . . . . . . . 5

Литература. . . . . . . . . . . . . . . . . .. . . 10

Приложение. . . . . . . . . . . . . . . . . . . . 12

Прямая линия пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям, или одной точкой, принадлежащей двум плоскостям, и известным направлением линии. В обоих случаях задача заключается в нахождении точки, общей для двух плоскостей.

Общий прием построения линии пересечения двух плоскостей заключается в следующем. Вводят вспомогательную плоскость, строят линии пересечения вспомогательной плоскости с двумя заданными и в пересечении построенных линий находят общую точку двух плоскостей. Для нахождения второй общей точки построение повторяют с помощью еще одной вспомогательной плоскости.

На рисунке 5 показано наглядное изображение линии пересечения K 1 K 2 двух плоскостей Р и Q .

Рисунок 5

Для наглядного изображения построения первой общей точки линии пересечения плоскостей Р и Q (рисунок 6) введена вспомогательная плоскость S . С плоскостью Р она пересекается по линии 1-2 , с плоскостью Q – по линии 3-4 . В пересечении линий 1-2 и 3-4 определена первая общая точка K 1 двух плоскостей Р и Q – первая точка линии их пересечения.

Аналогично вводят новую секущую плоскость и строят вторую точку линии пересечения.

Рисунок 6

Частный случай построения линии пересечения двух плоскостей, когда одна из них проецирующая. В этом случае построение линии пересечения упрощается тем, что одна ее проекция совпадает с проекцией проецирующей плоскости на ту плоскость проекций, к которой она перпендикулярна.

В качестве примера на рисунке 7 показано построение проекций m"n", mn линии пересечения MN фронтально-проецирующей плоскости Р с плоскостью треугольника АВС .

Рисунок 7

На фронтальной проекции в пересечении проекций a"b" и а"с" со следом Р u находим фронтальные проекции m" и n" двух общих точек заданных плоскостей. По ним построены горизонтальные проекции m и n на горизонтальных проекциях аb и ас сторон треугольника. Через точки m и n проводим горизонтальную проекцию линии пересечения плоскостей. При взгляде по стрелке S по фронтальной проекции очевидно, что часть треугольника левее линии пересечения MN (m"n" ) находится над плоскостью Р , т. е. видима, остальная часть - под плоскостью Р , т. е. невидима (участок mbcn показан штриховой линией).

Другой пример построения линии пересечения двух треугольных пластин АВС и DEF , одна из которых (DEF ) задана как горизонтально-проецирующая плоскость, приведен на рисунке 8.

Рисунок 8

На горизонтальной проекции в пересечении горизонтальных проекций ab и bc сторон DАВС с проекцией dfe второго треугольника находим горизонтальные проекции m и n точек их пересечения. По ним на фронтальных проекциях сторон а"b" и b"c" строим фронтальные проекции m" и n" точек линии пересечения MN . На фронтальной проекции отмечаем видимость частей треугольников, руководствуясь следующим: при взгляде по стрелке S по горизонтальной проекции очевидно, что сторона АС находится перед плоскостью треугольника DEF .


Следовательно, сторона АС и ограничиваемая ею часть треугольника АВС до линии пересечения MN видимы (т. е. видима фронтальная проекция четырехугольника a"c"n"m" ). Видимая часть фронтальной проекции DDEF на чертеже оттенена.

Построение линии пересечения плоскостей общего положения. На рисунке 9 приведено построение проекций m"n", mn линии пересечения двух плоскостей, одна из которых задана проекци­ями а"b", b"c", ab, bc двух пересекающихся прямых, другая - проекциями d"e", f"g", de, fg двух параллельных прямых.

В качестве вспомогательных плоскостей взяты две горизонтальные плоскости, заданные следами R u и Т u .

Плоскость R пересекает первую заданную плоскость по прямой 1-2 , вторую – по прямой 3-4 . По фронтальным проекциям 1", 2" и 3", 4" находим с помощью линий связи горизонтальные проекции 1, 2 и 3, 4 на горизонтальных проекциях ab, bc, de, fg прямых. Через них проводим горизонтальные проекции линий 1-2 и 3-4 линий пересечения. Отмечаем точку m – горизонтальную проекцию общей точки M трех плоскостей – двух заданных и вспомогательной R . По ней определяем фронтальную проекцию m" на фронтальном следе R u вспомогательной плоскости.

Рисунок 9

Вспомогательные плоскости Т и R параллельны. Линии их пересечения с заданными плоскостями также параллельны. Поэтому горизонтальные проекции линий пересечения плоскости Т c заданными плоскостями проведены через проекцию b параллельно проекции 1-2 и через проекцию 5 параллельно проекции 3-4 . В их пересечении найдена горизонтальная проекция n второй общей точки трех плоскостей, т.е. линии пересечения двух заданных плоскостей. По ней на фронтальном следе T u вспомогательной плоскости построена фронтальная проекция n" . Через построенные проекции m", n" и m, n проводим фронтальную и горизонтальную проекции искомой линии пересечения MN .

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и, то есть как множество точек, удовлетворяющих системе двух линейных уравнений

(V.5)

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве
.

Пример V .12 . Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение . Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz .

Точка пересечения прямой с плоскостью Oyz имеет абсциссу
. Поэтому, полагая в данной системе уравнений
, получим систему с двумя переменными:

Ее решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе уравнений
, получим систему

решение которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz .

Теперь запишем уравнения прямой, проходящей через точки
и
:
или
, где
будет направляющим векто-ром этой прямой.

Пример V .13. Прямая задана каноническим уравнением
. Составить общее уравнение этой прямой.

Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:


Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых
параллельна осиOz (
), а другая
– осиОу (
).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:


Замечание . Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором .

Пусть в трехмерном пространстве задана прямая l , проходящая через точку
, и ее направляющий вектор
.

Любой вектор
, где
, лежащий на прямой, коллинеарен с вектором, поэтому их координаты пропорциональны, то есть

. (V.6)

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

. (V.7)

Пример V .14. Найти уравнение прямой, проходящей через две точки
,
.

,

где
,
,
.

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

где t – параметр,
.

Расстояние от точки до прямой

Рассмотри двухмерное евклидовое пространство ﻉ с декартовой системой координат. Пусть точка
ﻉ и l ﻉ. Найдем расстояние от этой точки до прямой. Положим
, и прямая l задается уравнением
(рис.V.8).

Расстояние
, вектор
, где
– нормальный вектор прямой l ,
и – коллинеарны, поэтому их координаты пропорциональны, то есть
, следовательно,
,
.

Отсюда
или умножая эти уравнения наA и B соответственно и складывая их, находим
, отсюда

.

(V.8)

определяет расстояние от точки
до прямой
.

Пример V .15. Найти уравнение прямой, проходящей через точку
перпендикулярно прямойl :
и найти расстояние от
до прямойl .

Из рис. V.8 имеем
, а нормальный вектор прямойl
. Из условия перпендикулярности имеем

Так как
, то

. (V.9)

Это и есть уравнение прямой, проходящей через точку
,перпендикулярно прямой
.

Пусть имеем уравнение прямой (V.9), проходящей через точку
, перпендикулярна прямойl :
. Найдем расстояние от точки
до прямойl , используя формулу (V.8).

Для нахождения искомого расстояния достаточно найти уравнение прямой, проходящей через две точки
и точку
, лежащую на прямой в основании перпендикуляра. Пусть
, тогда

Так как
, а вектор
, то

. (V.11)

Поскольку точка
лежит на прямойl , то имеем еще одно равенство
или

Приведем систему к виду, удобному для применения метода Крамера

Ее решение имеет вид

,

. (V.12)

Подставляя (V.12) в (V.10), получаем исходное расстояние.

Пример V .16. В двухмерном пространстве задана точка
и прямая
. Найти расстояние от точки
до прямой; записать уравнение прямой, проходящей через точку
перпендикулярно заданной прямой и найти расстояние от точки
до основания перпендикуляра к исходной прямой.

По формуле (V.8) имеем

Уравнение прямой, содержащей перпендикуляр, найдем как прямую, проходящую через две точки
и
, воспользовавшись формулой (V.11). Так как
, то, с учетом того, что
, а
, имеем

.

Для нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой

Следовательно,
,
, отсюда.

Рассмотрим трехмерное евклидовое пространство ﻉ. Пусть точка
ﻉ и плоскость ﻉ. Найдем расстояние от этой точки
до плоскости, заданной уравнением (рис.V.9).

Аналогично двухмерному пространству имеем
и вектор
, а, отсюда

. (V.13)

Уравнение прямой, содержащей перпендикуляр к плоскости , запишем как уравнение прямой, проходящей через две точки
и
, лежащую в плоскости:

. (V.14)

Для нахождения координат точки
к двум любым равенствам формулы (V.14) добавим уравнение

Решая систему трех уравнений (V.14), (V.15), найдем ,,– координаты точки
. Тогда уравнение перпендикуляра запишется в виде

.

Для нахождения расстояния от точки
до плоскости вместо формулой (V.13) воспользуемся

Прямая линия пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям, или одной точкой, принадлежащей двум плоскостям, и известным направлением линии. В обоих случаях задача заключается в нахождении точки, общей для двух плоскостей.

Общий прием построения линии пересечения двух плоскостей заключается в следующем. Вводят вспомогательную плоскость, строят линии пересечения вспомогательной плоскости с двумя заданными и в пересечении построенных линий находят общую точку двух плоскостей. Для нахождения второй общей точки построение повторяют с помощью еще одной вспомогательной плоскости.

На рисунке 4.5 показано наглядное изображение линии пересечения K1K2 двух плоскостей Р и Q.

Для наглядного изображения построения первой общей точки линии пересечения плоскостей Р и Q (рис. 4.6) введена вспомогательная плоскость S. С плоскостью Р она пересекается по линии 1-2, с плоскостью Q - по линии 3-4. В пересечении линий 1-2 и 3-4 определена первая общая точка К1 двух плоскостей Р и Q - первая точка линии их пересечения.

Аналогично вводят новую секущую плоскость и строят вторую точку линии пересечения.

Частный случай построения линии пересечения двух плоскостей, когда одна из них проецирующая. В этом случае построение линии пересечения упрощается тем, что одна ее проекция совпадает с проекцией проецирующей плоскости на ту плоскость проекций, к которой она перпендикулярна.

В качестве примера на рисунке 4.7 показано построение проекций т"п", тп линии пересечения MN фронтально-проецирующей плоскости Р с плоскостью треугольника ABC.

На фронтальной проекции в пересечении проекций а"b" и а"с" со следом P v находим фронтальные проекции т" и п" двух общих точек заданных плоскостей. По ним построены горизонтальные проекции т и п на горизонтальных проекциях ab и ас сторон треугольника. Через точки т и п проводим горизонтальную проекцию линии пересечения плоскостей. При взгляде по стрелке S по фронтальной проекции очевидно, что часть треугольника левее линии пересечения MN (т"п") находится над плоскостью Р, т. е. видима, остальная часть - под плоскостью Р, т. е. невидима (участок mbcn показан штриховой линией).

Другой пример построения линии пересечения двух треугольных пластин ABC и DEF, одна из которых (DEF) задана как горизонтально-проецирующая плоскость, приведен на

рисунке 4.8. На горизонтальной проекции в пересечении горизонтальных проекций ab и b с сторон треугольника АВС с проекцией dfe второго треугольника находим горизонтальные проекции т и п точек их пересечения. По ним на фронтальных проекциях сторон а"b" и b "с" строим фронтальные проекции т" и п" точек линии пересечения MN. На фронтальной проекции отмечаем видимость частей треугольников, руководствуясь следующим: при взгляде по стрелке S по горизонтальной проекции очевидно, что сторона АС находится перед плоскостью треугольника DEF.

Следовательно, сторона АС и ограничиваемая ею часть треугольника ABC до линии пересечения MN видимы (т. е. видима фронтальная проекция четырехугольника а"с"п"т"). Видимая часть фронтальной проекции треугольника DEF на чертеже оттенена.

Построение линии пересечения плоскостей общего положения. На рисунке 4.9 приведено построение проекций т"п", тп линии пересечения двух плоскостей, одна из которых задана проекциями а"b", b"с’, ab, bс двух пересекающихся прямых, другая - проекциями d’e’, f"g", de, fg двух параллельных прямых.

В качестве вспомогательных плоскостей взяты две горизонтальные плоскости, заданные следами Rv и T v .

Плоскость R пересекает первую заданную плоскость по прямой 1-2, вторую - по прямой 3-4. По фронтальным проекциям 1", 2" и 3", 4" находим с помощью линий связи горизонтальные проекции 1, 2 и 3, 4 на горизонтальных проекциях аb, bс, de, fg прямых. Через них проводим горизонтальные проекции линий 1-2 и 3-4 линий пересечения. Отмечаем точку т - горизонтальную проекцию общей точки М трех плоскостей - двух заданных и вспомогательной R. По ней определяем фронтальную проекцию т" на фронтальном следе R v вспомогательной плоскости.

Вспомогательные плоскости Т и R параллельны. Линии их пересечения с заданными плоскостями также параллельны. Поэтому горизонтальные проекции линий пересечения плоскости Т с заданными плоскостями проведены через проекцию ь параллельно проекции 1-2 и через проекцию 5 параллельно проекции 3-4. В их пересечении найдена горизонтальная проекция п второй общей точки трех плоскостей, т. е. линии пересечения двух заданных плоскостей. По ней на фронтальном следе T v вспомогательной плоскости построена фронтальная проекция п". Через построенные проекции т", п" и т, п проводим фронтальную и горизонтальную проекции искомой линии пересечения MN.

Стерлитамакский филиал

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ

НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Методические указания к решению домашнего задания № 3

для студентов специальности 240801, 240401, 280201


Методические указания предназначены для студентов всех специальностей при изучении темы "Взаимное пересечение поверхностей" и выполнении домашнего графического задания по этой теме.

Перед работой с методическими указаниями студент обязан изучить материал по рекомендуемой литературе.

1.1 Целью задания является изучение способов построения линии пересечения поверхностей.

а) построить проекции линий пересечения заданных поверхностей способом плоскостей-посредников (формат A3);

б) построить проекции линий пересечения поверхностей способом сферических посредников (формат A3);

в) отметить характерные точки линий пересечения.

Варианты индивидуальных заданий приведены в приложении.

2 МЕТОДИКА И ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

2.1. Произвести разметку (компоновку) формата, предусматривая рациональное использование поля чертежа.

2.2. Вычертить в тонких линиях карандашом исходные данные задачи, вспомогательные линии построения, найденную линию пересечения поверхностей.

2.3. Заполнить основную надпись (содержание и размеры приведены на рис.1)

Рис. I. Основная надпись


2.4. Работа, выполненная в тонких линиях, должка быть представлена на проверку преподавателю.

2.5. После проверки произвести обводку чертежа, исходя из следующих требований:

2.5.1 Данные элементы выполняются черным цветом карандашом, тушью или пастой сплошной основной линией (S @ 1 мм).

2.5.2 Линии проекционной связи и оси проекций выполняются черным цветом сплошной тонкой линией карандашом, тушью или пастой (S @ 0,5 мм).

2.5.3 Линии вспомогательных построений, выполняются зеленым или синим цветом сплошной тонкой линией (S @ 0,5 мм) также карандашом, тушью или пастой.

2.5.4 Искомые элементы выполняются сплошной основной линией красного цвета (карандаш, тушь, паста, фломастер, S @ 1 мм), S - толщина линии.

2.6. Представить работу для защиты. Защита работы фиксируется подписью преподавателя в графе «Принял» и сопровождается соответствующей оценкой, проставляемой в виде дроби: числитель - оценка за глубину изучения темы, знаменатель - оценка за качество графического исполнения чертежа.

3 ОБЩИЕ СВЕДЕНИЯ

Линия пересечения поверхностей - это кривая, состоящая из точек, принадлежащих обеим поверхностям. Она представляет собой в общем случае пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми. Обычно линию пересечения строят по ее отдельным точкам.



Общим способом построения этих точек является способ поверхностей - посредников. Пересекая данные поверхности некоторой вспомогательной поверхностью и определяя линии пересечения ее с данными поверхностями, в пересечении этих линий получим точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностей-посредников применяют плоскости или сферы, в зависимости от чего различают следующие способы построения точек линии пересечения двух поверхностей:

а) способ вспомогательных плоскостей;

б) способ вспомогательных сфер.

Применение того или иного способа построения линии пересечения поверхностей зависит как от типа данных поверхностей, так и от их взаимного расположения.


4 СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ

ЧАСТНОГО ПОЛОЖЕНИЯ

При нахождении точек линии пересечения поверхностей необходимо соблюдать определенную последовательность. У линии пересечения различают точки опорные (характерные) и промежуточные (случайные). В первую очередь определяют опорные точки, т.к. они позволяют видеть, в каких пределах расположены проекции линии пересечения и где необходимо изменять положение вспомогательных поверхностей-посредников.

К опорным точкам относят точки, лежащие на очерках поверхностей, высшие и низшие точки, ближайшие к наблюдателю и наиболее удаленные от него, крайние левые и правые.

Способ вспомогательных плоскостей следует применять тогда, когда обе пересекающиеся поверхности, возможно пересечь по графически простым линиям (окружностям или прямым) некоторой совокупностью проецирующих плоскостей (или, в частном случае, совокупностью плоскостей уровня).

На рис. 2 показано построение линии пересечения горизонтально проецирующего цилиндра с конусом вращения. Опорные точки 1 и 2 определены при пересечении главных меридианов обеих поверхностей, находящихся в плоскости симметрии. Случайные точки 3,3 1 4, 4 1 находят с помощью горизонтальных плоскостей уровня S 1 и S 2 , пересекающих обе поверхности по окружности. Фронтальная проекция линии пересечения строится по законам проекционной связи.

На рис. 3 построена линия пересечения конуса вращения со сферой. Опорные точки линии пересечения 1 и 2 определяются сразу, как и в предыдущем случае, при пересечении очерковых образующих (главных меридианов). Случайные точки 5, 5 1 находят с помощью горизонтальной плоскости уровня S 3 . Точки видимости 4и 4 1 определяет плоскость S 1 , пересекающая сферу по экватору. Точки 4 и 4 1 разделяют горизонтальную проекцию линии пересечения на видимую и невидимую части. Для построения двух крайних левых точек 3 и 3 1 необходимо из точки 0 (0" , 0) пересечения осей конуса и шара опустить перпендикуляр на образующую конуса и через точку К" провести плоскость S 2 . В пересечении соответствующих окружностей получаются точки 3 и 3 1 - крайние левые. Проведя ряд вспомогательных плоскостей, можно получить какое угодно количество случайных точек, уточняющих форму линии пересечения.

Рис. 2. Построение линии пересечения цилиндра и конуса

Рис. 3. Построение линии пересечения конуса и сферы

5 СПОСОБ СФЕРИЧЕСКИХ ПОСРЕДНИКОВ

Сферические посредники нашли широкое применение в решении задач на взаимное пересечение поверхностей. Обуславливается это тем, что:

а) проекции сферы строятся чрезвычайно просто;

б) на сфере может быть взято бесчисленное множество семейств окружностей;

в) любая плоскость, проходящая через центр сферы, является плоскостью ее симметрии,

В основе метода сферических посредников лежит следующая теорема: "Две соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения их главных меридианов". Пусть заданы две соосные поверхности вращения Ф и ψ рис, 4), их главные меридианы а" и b" Общие точки этих меридианов 2. и 1 образуют при вращении окружности, которые являются общими для данных поверхностей. Эти окружности проецируются на фронтальную плоскость проекций в виде прямых, перпендикулярных к оси вращения, а на горизонтальную плоскость - в натуральную величину. Любое другое поясное сечение, например, плоскостью S, даст две окружности разных диаметров.

В способе сферических посредников в качестве одной из соосных поверхностей берутся сферы, а в качестве второй - любая поверхность вращения, например, конус, цилиндр, шар, эллипсоид и гиперболоид вращения и др.

Рис. 4. Соосные поверхности

В этом случае указанная теорема получает следующую формулировку: "Если центр секущей сферы находится на оси поверхности вращения, то сфера пересекает данную поверхность по окружности" (рис.5).

Рис. 5. Сфера, соосная поверхностям вращения

Во всех случаях сфера пересекается с поверхностью вращения по окружностям равных или разных диаметров, которые проецируются в прямые линии, перпендикулярные к оси поверхности вращения. Способ сферических посредников имеет две разновидности:

а) способ концентрических сфер, когда сферы-посредники строятся из одного и того же центра;

б) способ эксцентрических сфер, когда посредники строятся из различных центров.

Для решения задач первым способом необходимы следующие условия:

l) обе заданные поверхности должны быть поверхностями вращения;

2) оси обеих поверхностей должны пересекаться между собой и лежать в общей плоскости симметрии.

Для решения задач вторым способом (эксцентрических сфер) условия несколько иные, а именно:

1) одна из пересекающихся поверхностей должна быть поверхностью вращения, а вторая - нести на себе семейство круговых сечений;

2) обе поверхности должны иметь общую плоскость симметрии, на которую круговые сечения проецируются в виде прямых линий.

На рис.6 показано определение линии пересечения двух поверхностей вращения (конуса и цилиндра) способом концентрических сфер. План решения задачи следующий:

1) принимают точку пересечения осей поверхностей О (О" , О) за центр, проводят вспомогательные сферы-посредники;

2) определяют окружности пересечения сфер-посредников с каждой из заданных поверхностей в отдельности;

3) находят точки пересечения полученных окружностей, эти точки принадлежат искомой линии пересечения" поверхностей.

Начинают построение с определения опорных точек - точек пересечения очерковых образующих 1 и 2. Далее определяют значение радиуса наибольшей и наименьшей сферы-посредника; R макс равен расстоянию от центра О до наиболее удаленней точки пересечения очерковых образующих, Для определения радиуса наименьшей сферы-посредника R мин. из центра О" опускают нормали О"К" и

О" Т" на очерковые образующие обеих поверхностей. Величина большей из нормалей и является радиусом наименьшей сферы-посредника. Эта наименьшая вспомогательная сфера даёт еще одну опорную точку - точку 5, которая является точкой крайнего прогиба, вершиной кривой линии пересечения. Остальные точки строятся с помощью промежуточных сфер, радиус которых берется в пределах R мин


Рис. 7. Построение линии пересечения с помощью эксцентрических сфер

На рис.7 построена линия пересечения конуса, ось которого перпендикулярна горизонтальной плоскости, и четверти тора, ось вращения которого перпендикулярна фронтальной плоскости проекций. Для решения использовался способ эксцентрических сфер-посредников. Решение задачи начинают с определения точек пересечения очерковых образующих обеих поверхностей. Точки 1,2,3.определяются непосредственно с чертежа фронтальной проекции, а точка 4 пересечения оснований поверхностей найдена на горизонтальной проекции. Для построения промежуточных точек линии пересечения рассекают торовую поверхность плоскостями, проходящими через ось тора. В сечении получают окружности. Например, плоскость S 1 пересекает тор по окружности диаметра а" b". Изцентра этой окружности точки К" восстанавливают перпендикуляр до пересечения с осью конуса в точке О" 1 . Принимая эту точку за центр, строят вспомогательную сферу-посредник радиусом О" 1 а" " 1 b" ). Эта сфера пересекает тор по известной уже окружности а" b" , а конус - по окружности 8" -9" . Взаимное их пересечение дает точку 5 линии пересечения. Аналогично с помощью плоскостей S 2 и S 3 найдены точки 6 и 7.

ЛИТЕРАТУРА

1. Нартова Л.Г. Начертательная геометрия: Учеб. - М.: Академия, 2011.

2. Гордон В.О. Начертательная геометрия. – М.: Высш. шк., 2002.

3. Гордон В.О. Сборник задач по курсу начертательной геометрии. – М.: Высш. шк., 2003.

4. Стрижаков А.В. и др. Начертательная геометрия: Учеб. пос. для вузов. - Ростов н/Д: Феникс, 2004.


ПРИЛОЖЕНИЕ






2. Методика и порядок выполнения задания. . . . . . . . . . . . 1

3. Общие сведения. . . . . . . . . . . . . . . . . . . . . . . 2

4. Способ вспомогательных плоскостей частного положения. . . . . 3

5. Способ сферических посредников. . . . . . . . . . . . . . . . 5

Литература. . . . . . . . . . . . . . . . . . . . . . . . 10

Приложение. . . . . . . . . . . . . . . . . . . . . . . . 11


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении