mppss.ru – Все про автомобили

Все про автомобили

Реакция взаимодействия карбоновых кислот. Подготовка к егэ по химии. карбоновые кислоты. Высшие непредельные кислоты

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих — карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Вконтакте

Одноклассники

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН — формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса «-оат» (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты — соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов — маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную — как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная — жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, — соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Образование галогеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

Гидратация алкенов

Гидратация алкенов - присоединение воды по π — связи молекулы алкена, например:

Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

Окисление алкенов

Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают реакцией взаимодействия водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного газа и водорода, называемую также «синтез-газ», получают при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Основными способами получения кислородсодержащих соединений (спиртов) являются: гидролиз галогеналканов, гидратация алкенов, гидрирование альдегидов и кетонов, окисление алкенов, а также получение метанола из «синтез-газа» и сбраживание сахаристых веществ.

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . При окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

2. Реакция Кучерова. Из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 =5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Но при окислении метаналя аммиачным раствором оксида серебра, образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

2. Ароматические карбоновые кислоты образуются при окислении гомологов бензола :

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и гидролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль.

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная групп а:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислоты Название кислоты тривиальное/систематическое Название соли тривиальное/систематическое
HCOOH муравьиная/ метановая формиат/ метаноат
CH 3 COOH уксусная/ этановая ацетат/ этаноат
CH 3 CH 2 COOH пропионовая/ пропановая пропионат/ пропаноат
CH 3 CH 2 CH 2 COOH масляная/ бутановая бутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Реакции разрушения карбоксильной группы (декарбоксилирование)

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ.

КАРБОНОВЫЕ КИСЛОТЫ.

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2


Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)


Многоосновные (дикарбоновые, трикарбоновые и т.д.).



  1. По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.


- непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.
- ароматические

пара-метилбензойная кислота
НАЗВАНИЯ КАРБОНОВЫХ КИСЛОТ.


Название

Формула

кислоты


кислоты

её соли и

(эфиры)


муравьиная

метановая

формиат

HCOOH

уксусная

этановая

ацетат

CH 3 COOH

пропионовая

пропановая

пропионат

CH 3 CH 2 COOH

масляная

бутановая

бутират

CH 3 (CH 2) 2 COOH

валериановая

пентановая

валерат

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

стеарат

С 17 Н 35 СООН

акриловая

пропеновая

акрилат

CH 2 =CH–COOH

олеиновая

цис -9-октадеценовая

олеат

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

бензоат

C 6 H 5 -COOH

щавелевая

этандиовая

оксалат

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.
2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)
3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3


5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.


СТРОЕНИЕ КАРБОКСИЛЬНОЙ ГРУППЫ.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.


ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Соли

Сложные эфиры

Галогенангидриды

Ангидриды

Амиды.










ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.


1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.



2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.



3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O


4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl



5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl


6. Взаимодействие реактива Гриньяра с СО 2:

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br



7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4



8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

1. Кислотные свойства – замещение атома Н в карбоксильной группе на металл или ион аммония.


1.Взаимодействие с металлами

2CH 3 COOH+Ca (CH 3 COO) 2 Ca+H 2

ацетат кальция



2.Взаимодействие с оксидами металлов

2CH 3 COOH+BaO (CH 3 COO) 2 Ba+H 2 O

3.Реакция нейтрализации с гидроксидами металлов

2CH 3 COOH+Cu(OH) 2  (CH 3 COO) 2 Cu + 2H 2 O

4.Взаимодействие с солями более слабых и летучих (или нерастворимых) кислот

2CH 3 COOH+CaCO 3  (CH 3 COO) 2 Ca + H 2 O + CO 2

4*. Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими карбонатами и гидрокарбонатами.

В результате наблюдается выделение углекислого газа.

2CH 3 COOH+Na 2 CO 3 à 2CH 3 COONa+H 2 O+CO 2 

2. Замещение гидроксильной группы:


5.Реакция этерификации




6.Образование галоген-ангидридов – с помощью хлоридов фосфора (III) и (V).



7. Образование амидов:




8. Получение ангидридов.

С помощью Р 2 О 5 можно дегидратировать карбоновую кислоту – в результате получается ангидрид.

2СН 3 – СООН + Р 2 О 5  (СН 3 СО) 2 О + НРО 3


3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе (-углеродный атом)


9.Галогенирование кислот – реакция идёт в присутствии красного фосфора или на свету.

CH 3 -COOH+Br 2 –(Р кр) CH 2 -COOH + НВr

Особенности муравьиной кислоты.


1. Разложение при нагревании.

Н-СООН –(H 2 SO 4 конц,t) CO + H 2 O

2. Реакция серебряного зеркала и с гидроксидом меди (II) – муравьиная кислота проявляет свойства альдегидов.

Н-COOH+2OH(NH 4) 2 СО 3 +2 Ag +2NH 3 +H 2 O
H-COOH + Cu(OH) 2 –t CO 2 + Cu 2 O + H 2 O

3. Окисление хлором и бромом, а также азотной кислотой.

H-COOH + Cl 2  CO 2 + 2HCl

Особенности бензойной кислоты.


1. Разложение при нагревании – декарбоксилирование.

При нагревании бензойной кислоты она разлагается на бензол и углекислый газ:


2. Реакции замещения в ароматическом кольце.

Карбоксильная группа является электроноакцепторной, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.
+ HNO 3 –(H 2 SO 4) +H 2 O

Особенности щавелевой кислоты.


1. Разложение при нагревании



2. Окисление перманганатом калия.


Особенности непредельных кислот (акриловой и олеиновой).


1. Реакции присоединения.

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

СН 2 =СН-СООН + НBr  Br-CH 2 -CH 2 -COOH

Также к непредельным кислотам можно присоединять галогены и водород:

С 17 Н 33 -СООН+H 2  C 17 H 35 -COOH(стеариновая)



2. Реакции окисления

При мягком окислении акриловой кислоты образуется 2 гидроксогруппы:

3СН 2 =СН-СООН+2KMnO 4 +2H 2 O 2CH 2 (OH)-CH(OH)-COOК + CH 2 (OH)-CH(OH)-COOH +2MnO 2


Свойства солей карбоновых кислот.

Свойства галогенангидридов

СЛОЖНЫЕ ЭФИРЫ

это соединения, содержащие карбоксильную группу, связанную с двумя алкильными радикалами.

Общая формула сложных эфиров такая же, как у карбоновых кислот: C n H 2 n O 2


НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ. Названия сложных эфиров определяются названиями кислоты и спирта, из которых они образуются.

ПОЛУЧЕНИЕ СЛОЖНЫХ ЭФИРОВ.

1)Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

2) Сложные эфиры фенолов нельзя получить с помощью этерификации , для их получения используют реакцию фенолята с галогенангидридом кислоты:

С 6 Н 5 -О - Na + + C 2 H 5 –C=O  NaCl + C 6 H 5 –O-C=O

Cl C 2 H 5

Фениловый эфир пропановой кислоты (фенилпропаноат)

Виды изомерии сложных эфиров.

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутаноату изомерны этилизобутаноат, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами.
СВОЙСТВА СЛОЖНЫХ ЭФИРОВ.
1. Гидролиз сложных эфиров.

Реакция этерификации обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Кислотный гидролиз обратим:

Щелочной гидролиз протекает необратимо:

Эта реакция называется омылением сложного эфира.


2. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2

Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)

Многоосновные (дикарбоновые, трикарбоновые и т.д.).

    По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.

Непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.

Ароматические

пара-метилбензойная кислота

Названия карбоновых кислот.

Название

её соли и

муравьиная

метановая

уксусная

этановая

пропионовая

пропановая

пропионат

масляная

бутановая

CH 3 (CH 2) 2 COOH

валериановая

пентановая

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

С 17 Н 35 СООН

акриловая

пропеновая

олеиновая

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

щавелевая

этандиовая

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.

2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)

3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3

5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.

Строение карбоксильной группы.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н. В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Сложные эфиры

Галогенангидриды

Ангидриды

ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.

1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.

2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.

3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O

4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl

5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl

6. Взаимодействие реактива Гриньяра с СО 2 :

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br

7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4

8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении