mppss.ru – Все про автомобили

Все про автомобили

Сделать своими руками измеритель электронных компонентов. Самодельный тестер для проверки системы зажигания. Определение точного напряжения батарейки

Всем привет!

Сейчас в продаже имеются различные тестеры, но в большинстве случаев щупы к ним невысокого качества.

Был случай, что на морозе провода щупов ломались как спички. Поэтому я решил сделать недостающие мне щупы самостоятельно.

Процесс изготовления щупов

Примеряем наконечник от дротика. Нужно, чтобы он подошёл по размеру вместо наконечника ручки. Если не подходит, то придётся срезать резьбу на ручке. Если это не поможет, то придётся найти другие ручки.

Берём наконечник дротика, греем его газовой горелкой. После достаточного нагрева берём кусочек припоя, смоченного в паяльной кислоте, и бросаем внутрь. Опускаем туда же провод и ждём, пока припой остынет.

Собираем щуп. Наконечник лучше приклеить.

Второй комплект. Щупы с иглами для проколов изоляции. Берём карандаши со сменными грифелями, разбираем.

Берём иглы, примеряем их вместо грифелей.

Припаиваем к иглам провода.

Вставляем иглу с проводом в карандаш сзади. С первого раза может не получиться, нужно попасть в центр цанги карандаша. Иглы в цангу нужно вклеить, иначе при надавливании они уйдут внутрь.

В общем всё готово, осталось припаять штекеры к проводам и обтянуть щупы цветной термоусадкой. Осторожно с феном! Пластмасса канцтоваров может деформироваться.

Колпачки от ручек тоже пригодились.

Дополнение. Разбирая компьютерный блок питания я обнаружил разъём, клеммы которого очень хорошо налезают на все щупы, включая китайские и советские.

Поэтому я решил сделать ещё и насадки-крокодилы. Извлекаем клеммы, держатся они в колодке на защёлках. Надавливаем шилом на защёлку, извлекаем клемму. У клеммы обрезаем хвостовик, защёлку загибаем внутрь.

Хочу поделится очень полезной для каждого радиолюбителя схемой, найденной на просторах интернета и успешно повторенную. Это действительно очень нужный прибор, имеющий много функций и собранный на основе недорогого микроконтроллера ATmega8. Деталей минимум, поэтому при наличии готового программатора собирается за вечер.

Данный тестер с высокой точностью определяет номера и типы выводов транзистора, тиристора, диода и т.д. Будет очень полезен как начинающему радиолюбителю, так и профессионалам.

Особенно незаменим он в тех случаях, когда имеются запасы транзисторов с полустёртой маркировкой, или если не получается найти даташит на какой-нибудь редкий китайский транзистор. Схема на рисунке, кликните для увеличения или скачайте архив:

Типы тестируемых радиоэлементов

Имя элемента - Индикация на дисплее :

NPN транзисторы - на дисплее "NPN"
- PNP транзисторы - на дисплее "PNP"
- N-канальные-обогащенные MOSFET - на дисплее "N-E-MOS"
- P-канальные-обогащенные MOSFET - на дисплее "P-E-MOS"
- N-канальные-обедненные MOSFET - на дисплее "N-D-MOS"
- P-канальные-обедненные MOSFET - на дисплее "P-D-MOS"
- N-канальные JFET - на дисплее "N-JFET"
- P-канальные JFET - на дисплее "P-JFET"
- Тиристоры - на дисплее "Tyrystor"
- Симисторы - на дисплее "Triak"
- Диоды - на дисплее "Diode"
- Двухкатодные сборки диодов - на дисплее "Double diode CK"
- Двуханодные сборки диодов - на дисплее "Double diode CA"
- Два последовательно соединенных диода - на дисплее "2 diode series"
- Диоды симметричные - на дисплее "Diode symmetric"
- Резисторы - диапазон от 0,5 К до 500К [K]
- Конденсаторы - диапазон от 0,2nF до 1000uF

Описание дополнительных параметров измерения:

H21e (коэффициент усиления по току) - диапазон до 10000
- (1-2-3) - порядок подключенных выводов элемента
- Наличие элементов защиты - диода - "Символ диода"
- Прямое напряжение - Uf
- Напряжение открытия (для MOSFET) - Vt
- Емкость затвора (для MOSFET) - C=

В списке приводится вариант отображения информации для английской прошивки. На момент написания статьи появилась русская прошивка, с которой всё стало гораздо понятнее. для программирования контроллера ATmega8 можно тут.

Сама конструкция получается довольно компактной - примерно с пачку сигарет. Питание от батареи "крона" на 9В. Потребляемый ток 10-20мА.

Для удобства подключения испытуемых деталей, надо подобрать подходящий универсальный разъём. А лучше несколько - для различных типов радиодеталей.

Кстати, у многих радиолюбителей часто возникают проблемы с проверкой полевых транзисторов, в том числе с изолированным затвором. Имея данное устройство, вы сможете за пару секунд узнать и его цоколёвку, и работоспособность, и ёмкость перехода, и даже наличие встроенного защитного диода.

Планарные smd транзисторы тоже с трудом поддаются расшифровке. А многие радиодетали для поверхностного монтажа иногда не удаётся даже примерно определению - или то диод, или что ещё...

Что касается обычных резисторов, то и тут налицо превосходство нашего тестера над обычными омметрами, входящими в состав цифровых мультиметров DT. Здесь реализовано автоматическое переключение необходимого диапазона измерения.

Это касается и проверки конденсаторов - пикофарады, нанофарады, микрофарады. Просто подключите радиодеталь к гнёздам прибора и нажмите кнопку TEST - на экране сразу отобразится вся основная информация о элементе.

Готовый тестер можно разместить в любом небольшом пластмассовом корпусе. Устройство собрано и успешно испытано.

Обсудить статью ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ

Любителям сделать все своими руками предлагается простой тестер на основе микроамперметра М2027-М1, у которого диапазон измерения 0-300 мкА, внутреннее сопротивление 3000 Ом, класс точности 1,0.

Необходимые детали

Это тестер, имеющий магнитоэлектрический механизм для измерения тока, поэтому он мерит только постоянный ток. Подвижная катушка со стрелкой крепится на растяжках. Применяется в аналоговых электроизмерительных приборах. Найти на блошином рынке или купить в магазине радиодеталей проблем не составит. Там же можно приобрести и остальные материалы и компоненты, а также приставки к мультиметру. Кроме микроамперметра потребуется:

Если человек решил сделать себе мультиметр своими руками, значит, других измерительных приборов у него нет. Исходя из этого, и будем дальше действовать.

Выбор диапазонов измерения и вычисление номиналов резисторов

Определим для тестера диапазон измеряемых напряжений. Выберем три самых распространенных, покрывающих большинство потребностей радиолюбителя и домашнего электрика. Это диапазоны от 0 до 3 В, от 0 до 30 В и от 0 до 300 В.

Максимальный ток, проходящий через самодельный мультиметр равен 300 мкА. Поэтому задача сводится к подбору добавочного сопротивления, при котором стрелка отклонится на полную шкалу, а на последовательную цепочку Rд+ Rвн будет подано напряжение, соответствующее предельному значению диапазона.

То есть на диапазоне 3 В Rобщ=Rд+Rвн= U/I= 3/0,0003=10000 Ом,

где Rобщ – это общее сопротивление, Rд – добавочное сопротивление, а Rвн – внутреннее сопротивление тестера.

Rд=Rобщ-Rвн=10000-3000=7000 Ом или 7кОм.

На диапазоне 30 В общее сопротивление должно быть равно 30/0,0003=100000 Ом

Rд=100000-3000=97000 Ом или 97 кОм.

Для диапазон 300 В Rобщ=300/0,0003=1000000 Ом или 1 мОм.

Rд=1000000-3000=997000 Ом или 997 кОм.

Для измерения токов выберем диапазоны от 0 до 300 мА, от 0 до 30 мА и от 0 до 3 мА. В этом режиме шунтирующее сопротивление Rш подсоединяется к микроамперметру параллельно. Поэтому

Rобщ=Rш*Rвн/(Rш+Rвн).

А падение напряжения на шунте равно падению напряжения на катушке тестера и равно Uпр=Uш=0,0003*3000=0,9 В.

Отсюда в интервале 0…3 мА

Rобщ=U/I=0,9/0,003=300 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=300*3000/(3000-300)=333 Ом.

В диапазоне 0…30 мА Rобщ=U/I=0,9/0,030=30 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=30*3000/(3000-30)=30,3 Ом.

Отсюда в интервале 0…300 мА Rобщ=U/I=0,9/0,300=3 Ом.

Тогда
Rш=Rобщ*Rвн/(Rвн-Rобщ)=3*3000/(3000-3)=3,003 Ом.

Подгонка и монтаж

Чтобы сделать тестер точным, нужно подогнать номиналы резисторов. Эта часть работы самая кропотливая. Подготовим плату для монтажа. Для этого надо расчертить ее на квадратики размером сантиметр на сантиметр или немного меньше. Затем, сапожным ножом или чем-нибудь подобным по линиям прорезается медное покрытие до основы из стеклотекстолита. Получились изолированные контактные площадки. Отметили, где будут расположены элементы, получилось подобие монтажной схемы прямо на плате. В дальнейшем, к ним будут припаяны элементы тестера.

Чтобы самодельный тестер выдавал правильные показания с заданной погрешностью, все его компоненты должны иметь характеристики по точности такие же, как минимум, и даже выше. Внутреннее сопротивление катушки в магнитоэлектрическом механизме микроамперметра будем считать равным заявленным в паспорте 3000 Ом. Количество витков в катушке, диаметр провода, электропроводность металла, из которого сделана проволока известны. Значит, данным завода-изготовителя верить можно.

А вот напряжения батареек на 1,5 В могут немного отличаться от заявленных производителем, а знание точного значения напряжения потом потребуются для измерения тестером сопротивления резисторов, кабелей и других нагрузок.

Определение точного напряжения батарейки

Для того чтобы самому выяснить действительное напряжение батарейки потребуется хотя бы один точный резистор номиналом 2 или 2,2 кОм с погрешностью 0,5%. Этот номинал резистора выбран из-за того, что при последовательном подключении с ним микроамперметра, общее сопротивление цепи составит 5000 Ом. Следовательно, проходящий через тестер ток будет около 300 мкА, и стрелка отклонится на полную шкалу.

I=U/R=1,5/(3000+2000)=0,0003 А.

Если тестер покажет, к примеру, 290 мкА, значит, напряжение батареи равно

U=I*R=0,00029(3000+2000)=1,45 В.

Теперь зная точное напряжение на батарейках, имея одно точное сопротивление и микроамперметр можно подобрать необходимые номиналы сопротивления шунтов и добавочных резисторов.

Сбор блока питания

Блок питания для мультиметра собирается из двух последовательно соединенных батареек по 1,5 В. После этого к нему подключается последовательно микроамперметр и предварительно отобранный по номиналу резистор в 7 кОм. Тестер должен показать значение близкое к предельному току. Если прибор зашкалит, то последовательно к первому резистору необходимо подсоединить второй, маленького номинала, Если показания меньше 300 мкА, то параллельно к этим двум резисторам, подключают сопротивление большого номинала. Это уменьшит общее сопротивление добавочного резистора. Такие операции продолжаются до тех пор, пока стрелка не установится на пределе шкалы в 300 мкА, что сигнализирует о точной подгонке.

Для подбора точного резистора на 97 кОм, выбираем ближайший, подходящий по номиналу, и проделываем те же процедуры, что и с первым на 7 кОм. Но так как здесь необходим источник питания 30 В, то потребуется переделка питания мультиметра из батарей на 1,5 В. Собирается блок с выходным напряжением 15-30 В, на сколько хватит. К примеру, получилось 15 В, тогда всю подгонку делают из расчета, что стрелка должна стремится к показанию 150 мкА, то есть к половине шкалы. Это допустимо, так как шкала тестера при измерении тока и напряжения линейная, но желательно работать с полным напряжением.

Для регулировки добавочного резистора в 997 кОм для диапазона 300 В понадобятся генераторы постоянного тока или напряжения. Их можно использовать и как приставки к мультиметру при измерении сопротивлений.

Номиналы резисторов: R1=3 Ом, R2=30,3 Ом, R3=333 Ом, R4 переменный на 4,7 кОм, R5=7 кОм, R6=97 кОм, R7=997 кОм. Подбираются подгонкой. Питание 3 В. Монтаж можно сделать навеской элементов прямо на плате. Разъем можно установить на боковой стенке коробки, в которую врезается микроамперметр. Щупы изготавливаются из одножильного медного провода, а шнуры к ним из многожильного.

Подключение шунтов осуществляется перемычкой. В результате из микроамперметра получается тестер, которым можно мерить все три основных параметра электрического тока.

В этой статье я хочу показать вам, как сделать простой тестер для транзисторов NPN структуры, своими руками. Если вы собираете какую либо схему и хотите использовать в ней БУ транзисторы, то вы легко можете проверить его работоспособность этим тестером! Данная схема была найдена на американском сайте, переведена и опубликована! Предлагается 2 схемы.

Расскажу в двух словах, для тех кто не знает, как работает транзистор. На самом деле, говоря простым языком, транзистор ни что иное, как микро выключатель, только управляется он током. Транзистор имеет 3 вывода, эмиттер-база-коллектор. Для того что бы транзистор заработал, на базу подают маленький ток, транзистор открывается и может пропускать белее больший ток через эмиттер и коллектор. С помощью предложенного тестера, можно проверить, не имеет ли транзистор дефектов.

Транзистор тестер схема 1

Список деталей

  • Резистор 330 Ом — 1 шт.
  • Резистор 22 кОм — 1 шт.
  • Светодиод — 1 шт.
  • Крона 9 Вольт — 1 шт.
  • Монтажная плата
  • Клейма для кроны

Припаяйте все детали на кусочек монтажной платы. Контакты для подключения испытываемого транзистора, можно изготовить из толстой проволоки, или лучше всего, откусить от мощного резистора ножки, поделить их на 3 равные части и припаять к плате.

Ниже представлен готовый тестер с подключённым транзистором. Как вы видите, светодиод горит, значит транзистор открыт, ток протекает, а значит он исправен. Если светодиод не горит, соответственно его использовать уже не получится.

В этом небольшом обзоре рассмотрим возможность самостоятельного изготовления такого интересного и полезного в обиходе домашнем прибора, как простой тестер. Такой простой приборчик очень пригодится для оперативной проверки работоспособности радиодеталей и применения в быту.

Несмотря на то, что в магазинах можно купить тестер по достаточно низкой цене, самостоятельная сборка такого небольшого прибора станет отличной практикой для любого начинающего любителя радиотехники.

Собранный прибор очень удобен и вполне может использоваться даже мастерами своего дела. Фото самодельного тестера вы можете увидеть в обзоре ниже.


Принципиальная схема простого тестера

Такой прибор включает в себя минимальное количество элементов для сборки, которые есть в обиходе практически в любом доме или легко при необходимости могут быть куплены в любом магазине радиодеталей или даже в хозяйственном магазине.

По своей сути это единственный мультивибратор, который собран на транзисторной основе. С его помощью происходит генерация импульсов прямоугольного типа.


Контрольная цепь тока подключается к элементам мультивибратора на последовательной основе встречно и параллельно с использованием двух цветных светодиодов.

В итоге цепь, которая подлежит проверке с помощью устройства, тестируется током переменного типа, что обеспечивает высокую точность проверки.

Принципы работы тестера

С основного рабочего компонента, которым является мультивибратор, снимают переменный ток, который по своей амплитуде примерно равен тому, который подаётся источником питания. В качестве конденсирующего элемента подойдёт любой, выше 3.7 В, например на 16 или 25 В.


Естественно, что с разомкнутой цепью светодиоды не загораются. При замыкании цепи и прохождении тока по цепи загораются светодиоды. Всё просто.

Таким приборчиком можно очень быстро и качественно проверить любой элемент на работоспособность или цепь на разрыв в ней. Очень удобно для использования в домашних условиях, особенно не особо хорошо подготовленным человеком. Тестер транзисторов своими руками — что может быть проще?


Собирается такое устройство либо с применением простой печатной платы или же способом навесного монтирования. Также в область применения входит возможность определения «плюса» и «минуса», когда вам не известно, где они у исследуемого элемента. Для использования в качестве батареи можно использовать 2-3 батарейки AAA для минимизации размера устройства.

Второй способ изготовления компактного тестера для использования в автомобиле. У такого прибора будет буквально 2 главные рабочие функции — возможность показания напряжения «на массе» и наличие в цепи 12 В. Причём, всё это будет доступно буквально при присоединении одного проводка к сети машины.


Что понадобится для создания такого функционального приспособления:

  • обычный медицинский шприц на 5 см3;
  • батареи LR-44 в количестве 4 штук;
  • два маленьких светодиодных элемента с резисторным компонентом;
  • маленький кусочек стальной проволочки;
  • проводок с зажимом на его конечной части.

Схемы самодельных тестеров автомобильного типа

  • Встречным способом параллельно спаиваем оба используемых светодиода;
  • Через применяемый резистор один из концов необходимо припаять крепко к стальной проволоке;
  • Прямо внутрь корпуса шприца устанавливаете одну за другой батарейки. Выбраны именно такие, поскольку они прекрасно помещаются в пятикубовый шприц;
  • Щуп пластиковой трубкой изолируется от шприца, проверяете работоспособность непосредственно в машине на практике;
  • Проверяем, засветятся ли светодиоды на элементе в 12В.

Итак, применение самими вами сделанного тестера более, чем обусловлено в быту. Поверьте, что такой небольшой прибор обязательно пригодится если не в ежедневном быту, то в те моменты, когда нужно что-то проверить в электросети домашней или в автомобиле.

Изготовление тестера своими руками способно серьёзно поднять самооценку любого человека, который не верит в то, что своими руками способен сделать что угодно — важно лишь желание.

Фото тестеров своими руками


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении