mppss.ru – Все про автомобили

Все про автомобили

Классификация валов и осей машины, их применение. Валы и оси общие сведения и основы конструирования Служебное назначение и технические характеристики детали

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Описание конструкции и назначение детали

Оси служат для поддержания вращающихся вместе с ними или на них различных деталей машин и механизмов. Вращение оси вместе с установленными на ней деталями осуществляется относительно ее опор, называемых подшипниками. Примером не вращающейся оси может служить ось блока грузоподъемной машины, а вращающейся оси - вагонная ось. Оси воспринимают нагрузку от расположенных на них деталей и работают на изгиб.

Конструкция оси, ее размеры и жесткость, технические требования, программа выпуска - основные факторы, определяющие технологию изготовления и применяемое оборудование.

Все шейки оси представляют собой поверхности вращения относительно высокой точности. Это определяет целесообразность применения токарных операций только для их предварительной обработки, а окончательную обработку с целью обеспечения заданной точности размеров и шероховатости поверхностей следует выполнять шлифованием. Для обеспечения высоких требований к точности расположения шеек оси их окончательную обработку необходимо осуществить за одну установку или, в крайнем случае, на одних и тех же базах.

Деталь представляет собой тело вращения и состоит из простых конструктивных элементов, представленных в виде тел вращения круглого сечения различного диаметра и длины. Длина оси составляет 370 мм, максимальный диаметр равен 50 мм, минимальный - 48, максимальный диаметр отверстия 14Н12 (+0,18), а минимальный - 10 мм.

По рис. видно, что деталь ось имеет следующие поверхности:

Поверхность 1 и 2 рис. 1: квадрат со стороной 40d11 мм и отклонениями верхнее -0,08, нижнее -0,24, шероховатостью Ra = 6,3 мкм.

Поверхность 3 и 5 рис. 1: диаметр 50d11 мм и отклонениями верхнее -0,08, нижнее -0,24; шероховатостью Ra = 6,3 мкм

Поверхность 4 рис. 1: диаметр 48 мм; шероховатостью Ra = 6,3 мкм.

Поверхность 6 рис. 1: отверстие диаметром 14Н12; верхнее отклонения +0.18, резьбу К3/8; шероховатость Ra = 3,2 мкм

Почти все поверхности оси относятся к основным, потому что сопрягаются с соответствующими поверхностями других деталей машин или же непосредственно участвуют в рабочем процессе машины. Это объясняет достаточно высокие требования к точности обработки детали и степени шероховатости, указанные на чертеже.

Можно отметить, что конструкция детали полностью отвечает ее служебному назначению. Но принцип технологичности конструкции состоит не только в удовлетворении эксплуатационных требований, но также и требований наиболее рационального и экономичного изготовления изделия.

Деталь имеет поверхности легкодоступные для обработки; достаточная жесткость детали позволяет обрабатывать ее на станках с наиболее производительными режимами резания. Данная деталь является технологичной, так как содержит простые профили поверхностей, ее обработка не требует специально разработанных приспособлений и станков. Поверхности оси обрабатываются на токарном, сверлильном, фрезерном и шлифовальном станках. Необходимая точность размеров и шероховатость поверхностей достигаются относительно небольшим набором несложных операций, а также набором стандартных резцов, фрез и кругов для шлифования.

2. Материал заготовки

Химический состав стали40Х ГОСТ4543 представлен в таблице 1.

Таблица 1

Заготовка детали «ось» выполнена из конструкционно легированной стали марки Сталь40Х ГОСТ4543.

Из таблицы 1 видно, что в химическом составе стали40Х ГОСТ4543 максимальный процент содержания Хрома (Cr) - 0.80 - 1.10, а минимальный Фосфора (P) - 0.035 и Серы (S) - 0.035.

Механические свойства стали40Х ГОСТ4543 представлены таблице 2.

Таблица 2

Физические свойства стали40Х ГОСТ4543 представлены в приложение 1.

Технологический маршрут обработки детали «ось»

Наименование

оборудования

Режимы резания

Время\мин

Заготовительная

Выбрать заготовку

круг ш 60 мм Сталь 40Х ГОСТ4543

Отрезать заготовку в размер 380 мм

Ленточно-пильный станок

Токарная

Подрезать торец

Точить (черновое) наружный ш 52 мм и наружный ш 49 мм на расстояние 140 мм

сверлить отв ш 14Н на глубину 205 мм

нарезать резьбу К 3/8?

Токарный станок 16К20

резец отрезной т5к10

Резец проходной Т15К6

Сверло ш 14 мм

Метчик К 3/8"" для конической резьбы Р6М5

Сверлить отв. ш 10

сверлильный вертикальный станок 2Н135

сверло ш 10 мм

Фрезерная

Фрезеровать квадрат с 2-х сторон в размер 60 мм со стороной 40d11 ((-0.08)/(-0.24))

Термо. обработка

Токарная (чистовая)

Точить до ш 50d11 в размер 55 мм и до ш 48 мм в размер 140 мм

Токарный станок 16К20

Слесарная

Притупить острые кромки

напильник

Контрольная

Проверить на соответствие заданным параметрам

Операция 005 отрезать заготовку в размер 380 мм. Оборудование ленточнопильный станок - это оборудования для резки металлического профиля разного сечения и диаметра методом пиления на заготовки разной длины. Перечень материалов подлежащих распиливанию с использованием ленточнопильных станков - это сталь и её сплавы. Метод базирования зажим в тески.

Операция 010 Токарная подрезать торец, точить (черновое) наружный ш 52 мм и наружный ш 48 мм на расстояние 140 мм сверлить отв ш 14Н12 (+0.18) на глубину 205 мм нарезать резьбу К 3/8?. Оборудование: токарный станок 16К20 представляет собой универсальный токарно-винторезный агрегат, на котором можно производить точения материалов в виде тел вращения, нарезание модульной, метрической, а также осуществлять широкий спектр токарных процедур (сверление с использованием разных видов сверл, зенкерование и так далее) с изделиями из горячекатаного и холоднокатаного проката. Базирования при точении в центрах, при сверлении отверстия ш 14Н12 (+0.18) и нарезания резьбы К 3/8? зажать в трехкулачковый патрон.

Резец токарный отрезной Т5К10, 32х20х170 мм, ГОСТ 18884-73

Пластина твердый сплав Т5К10

Резец проходной Т15К6 20х30х170 2102-0059

Резец токарный проходной прямой (правые и левые) с пластиной из твердого сплава Т15К6, ГОСТ 18878, применяется при обтачивании наружных поверхностей и фасок исполнение угол ц45°угол врезки 10°

Метчик К3/8 машинно-ручной для конической дюймовой резьбы ГОСТ 6227 область применения - нарезание внутренней конической дюймовой резьбы с углом профиля 60° машинным или ручным способом.

Операция 015 сверлильная, сверлить отв. ш 10. Оборудование вертикально-сверлильный станок 2Н135, с помощью которого могут одинаково успешно выполняться операции сверления, рассверливания и развертывания отверстий, а также подрезки торцов и зенкерования. Станки 2Н135 удобны в использовании и благодаря тому, что при помощи коробки подач и скоростей шпинделя можно подбирать оптимальные режимы получения и обработки отверстий с различными параметрами и в материалах с разными характеристиками.

Сверло - это режущий инструмент, с вращательным движением резания и осевым движением подачи, предназначенный для выполнения отверстий в сплошном слое материала.

Операция 020 Фрезерная, фрезеровать квадрат с 2-х сторон в размер 60 мм со стороной 40d11 ((-0.08)/(-0.24)). Оборудование станок горизонтально-фрезерный X6132 многофункциональный аппарат, предназначенный для различной обработки металлических деталей. Он способен обрабатывать плоские, ступенчатые поверхности, прорезать канавки и нарезать шестеренки при помощи цилиндрических, угловых, концевых, фасонных, сферических фрез. Усиленная конструкция станка позволяет загружать тяжелые заготовки весом до 500 кг. Хорошая производительность обусловлена высокой мощностью и широким диапазоном скоростей обработки. Применение современного режущего инструмента позволяет добиться более высоких результатов.

Концевая фреза, материал - быстрорежущая сталь Р18, число зубьев - 18. Производительность концевой фрезы невелика, и описанный метод фрезерования граней квадрата может быть рекомендован для мелкосерийного производства.

Операция 025 термообработка твердость по Роквеллу 34…42 HRCз

Операция 030 токарная (чистовая) точить до ш 50d11 в размер 55 мм

Оборудования токарный станок 16К20. Базирования в центрах.

Операция 035 слесарная притупить кромки. Оборудование напильник.

Операция 040 контрольная проверить на соответствие заданным параметрам.

Оборудование ШЦТ-1 - универсальный, губки у которого располагаются в одну сторону и изготавливаются из твердосплавных материалов; для проверки внутренней резьбы используется резьбовой калибр-пробка.

3. Определение типа производства

Характер технологического процесса в значительной мере зависит от типа производства деталей (единичное, серийное, массовое). Это обусловлено тем, что в различных типах производств экономически целесообразно использование различного по степени универсальности, механизации и автоматизации оборудования, приспособлений, различного по 2 сложности и универсальности режущего и измерительного инструмента. В зависимости от вида производства существенно изменяются и организационные структуры цеха: расстановка оборудования, системы обслуживания рабочих мест, номенклатура деталей. По таблице 4 устанавливаем предварительно тип производства в зависимости от веса и количества деталей, подлежащих изготовлению в течение года.

Таблица 4. Тип производства

Масса детали, кг.

Тип производства

Единичное

Мелкосерийное

Среднесерийное

Крупносерийное

Массовое

Серийное производство условно подразделяется на мелкосерийное, среднесерийное и крупносерийное, в зависимости от количества деталей в серии. Таким образом, имея годовой выпуск продукции 350 штук/год, наше производство является мелкосерийное.

Базирование заготовки

010 Операция токарная (черновая)

Оборудование

Станок токарно-винторезный модели 16К20: Таблица 5

Таблица 5

Приспособление

Центра вращающиеся по ГОСТу 8742-92.

Инструмент режущий

Резец токарный отрезной Т5К10, 32х20х170 мм, ГОСТ 18884-73 пластина твердый сплав Т5К10, резец проходной Т15К6 20х30х170 2102-0059, резец токарный проходной прямой (правые и левые) с пластиной из твердого сплава Т15К6, ГОСТ 18878.

Инструмент мерительный

Штангенциркуль ШЦ-I по ГОСТ 166-80, предел измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм.

4. Режимы резания

а) Первый переход. Точить деталь поверху начерно до Ш52 на длине l=370 мм; Rа=12,5 мкм.

1) Глубина резания для торцевой поверхности t = 5 мм.

2) Подача по справочнику sп = 0,45 мм/об.

3) Скорость резания v, м/мин.

где Сv=350 - Учитывает обрабатываемый материал и материал режущей части резца;

m = 0,2 xV=0,15 yV = 0,35 - показатели степеней;

Т = 60 - стойкость резца, мин;

Кv - скоростной коэффициент

где КПV =0,96 - состояние поставки заготовки;

КИV =0,65 - материал режущей части;

КМV =0,90 - обрабатываемый материала;

К=0,70 - коэффициент параметра резца;

Кг=0,97 - коэффициент параметра резца.

0,96·0,65·0,90·0,70·0,97=0,38

Все значения коэффициентов выбраны согласно рекомендации справочника.

4) Число оборотов шпинделя.

5) Частота вращения шпинделя по паспорту n=1000 об/мин.

7) Сила резания.

Рz=Срz·tхр·syp·vпр·кр,

где kр - коэффициент силовой

где k1=1,04 - обрабатываемый материал.

k2=0,89 - главный угол в плане

kp=1,04·0,89=0,93

Ср=3200 - обрабатываемый материал и материал режущей части

Рz=3000·4,51,0·0,650,75·56,54-0,15·0,93=5424 Н

8) Эффективная мощность резания.

где з = 0,75 - к.п.д. станка.

NЭФ = 6,75 кВт 15 кВт = NCT.

9) Основное время на переход:

где у1=0 - величина врезания инструмента:

l - основная длина обработки, l=180 мм;

б) Второй переход.

Точить деталь поверху до Ш49 мм на длине l=140 мм, Rа=12,5 мкм

Режим резания принимаем согласно первому перехода.

Основное время.

Штучное калькуляционное время:

где Тпз=120 - подготовительно-заключительное время на операцию;

Оперативное время.

tоп=Уtо+Уtв,

Уtо=tо1+tо2=0,82+0,31=1,13 мин

где Уtп=20 - вспомогательное время на операцию, мин;

tоп=1,13+20=21,13 мин

Тштк= +=28.6 мин

в) Третий переход.

Сверлить отв ш 14Н12 (+0.18) мм на длину l=205 мм, Rа=12 мкм

Операция сверлильная

Оборудование

Сверлильный вертикальный станок 2Н135 технические характеристики вынесены в приложении 2.

Инструмент режущий

1. Сверла с диаметрами: 10 мм ГОСТу 2692-92. Материал сверл быстрорежущая сталь. Стойкость сверл Т=45 мин. Геометрические параметры: 2f=116°; г=2°; щ=30°; б=2-5°.

Мерительный инструмент

1. Штангенциркуль ШЦ-I ГОСТ 166-80, пределы измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм.

Расчет режимов резания

а) Первый переход. Сверлить отверстие диаметром 10 мм на длине l = 24 мм, Rа=12,5 мкм.

1) Глубина резания t=0,5d=5 мм.

3) Подача по паспорту станка s=0,25 об/мин.

4) Скорость резания V=20 м/мин.

5) Обороты шпинделя.

6) Частота вращения шпинделя по паспорту n=630 об/мин.

7) Действительная скорость резания:

8) Крутящий момент.

Ткр=см·Dдм·sqм·кр, (2.12)

где см - обрабатываемый материал и материал сверла взятый за эталон, см=0,345;

qм - показатель степени;

ум - показатель степени;

kмр - материал обрабатываемый, kмр=1,06.

Ткр=0,345·10І·0,250,8·1,06=12,1 Н·м

9) Мощность резания.

? , (2.5)

где з = 0,75 - к.п.д. станка.

NЭ =0,78 кВт 3 кВт = NCT.

10) Основное время на переход:

где у1=3 - величина врезания инструмента:

l - основная длина обработки, l=24 мм;

y2 - величина перебега инструмента, y2=0 мм;

Штучное калькуляционное время

где Т пз =50 - подготовительно-заключительное время на операцию

020 Операция фрезерная

Оборудование

Станок горизонтально-фрезерный X6132

Технические характеристики

Размер стола (Д х Ш), мм 1320х320

Промежуток х Ширина х Количество Т-образных пазов, мм х мм х шт. 18х3

Макс. вес заготовки, кг 500

Продольное перемещение, мм 700

Поперечное перемещение, мм 255

Вертикальное перемещение, мм 320

Диапазон продольной подачи, мм/мин 23.5~1180/18

Диапазон поперечной подачи, мм/мин 23.5~1180/1

Приспособления

Гидравлические призмы, ножи.

Инструмент режущий

Концевая фреза из быстрорежущей стали

Число режущих зубьев - 4.

Размеры: диаметр рабочей части - 10 мм

диаметр хвостовика - 10 мм

рабочая длина - 22 мм

общая длина - 72 мм.

Мерительный инструмент

Линейка металлическая ГОСТ 427-80, пределы измерения 0-40 мм, цена деления 1 мм.

Режимы резания

а) Первый переход. Фрезеровать деталь с двух сторон. Выдержать размер l=310 60 мм, Rа=6,3 мкм.

1) Глубина резания для торцевой поверхности t = 2 мм.

2) Подача sп = 0,12 мм/об.

3) Скорость резания v, м/мин.

где Сv=330 - учитывает обрабатываемый материал и материал режущей части резца;

m = 0,2 xV=0,1 yV = 0,2

qv=0,2 - показатели степеней по справочнику

Т = 120 - стойкость резца, мин;

Кf=0,87 - главный угол в плане;

КN=0,90 - состояние поставки заготовки;

КM =0,77 - обрабатываемый материал;

Кu =0,65 - материал режущей части фрезы;

120,8 м/мин

4) Частота вращения шпинделя.

где D - диаметр фрезы, D=10 мм

5) Частота вращения шпинделя по паспорту n=504 об/мин.

6) Действительная скорость резания:

v===126,6 м/мин

7) Минутная подача:

sм=sz·n·Z=0,12·10·504=604,8 мм/мин (2.3)

8) Минутная подача по паспорту Sмин=560 мм/мин

9) Действительная подача на зуб:

sz== = 0,06 мм/зуб

10) Сила резания.

где kp=1,31 - обрабатываемый материал.

Ср=8250; Хр=1,0; Yр=0,75; u=1,1; qv=1,3; щр=0,2

11) Усилие подачи.

Рх=0,3·Рz=0,3·2235=670,5 Н;

Рх=670,5 Н < 2400 Н = [Рх]

12) Эффективная мощность резания.

где з = 0,75 - к.п.д. станка.

NЭФ = 6,2 кВт 15 кВт = NCT.

13) Основное время на переход:

где у1 - величина врезания инструмента:

l - основная длина обработки, l=80 мм;

y2 - величина перебега инструмента, y2=5 мм;

015 Токарная чистовая

Оборудование

Станок токарно-винторезный модели 16К20ТС.

Техническую характеристику смотри в операции 010.

Инструмент режущий

Резец токарный проходной прямой, чистовой по ГОСТу 6743-93 тип 5, согласно рекомендации , материал режущей части Т15К6. Стойкость резца Т=60 мин; ВЧН=16Ч25 - сечение державки; f1=8; б=8 - задний угол; г =0 - передний угол; л = 0 - угол наклона лезвия; r = 2 мм - радиус при вершине резца; f=0,2 мм.

Инструмент мерительный

Линейка металлическая по ГОСТу 427-80, пределы измерения 0-125 мм, цена деления 1 мм.

Штангенциркуль ШЦ-I по ГОСТ 166-80, предел измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм

Режимы резания

Штучное калькуляционное время

где Тпз=60 - подготовительно-заключительное время на операцию

Оперативное время.

tоп=Уtо+Уtв,

где Уtо - сумма основного времени, мин;

Уtо=tо1+tо2+tо3+tо4+tо5=1,13+1,8+0,9+0,71+0,1=4,64 мин

где Уt в =24 - вспомогательное время на операцию, мин;

5. Назначение и устройство станочного приспособления

деталь технический ось заготовка

Рассмотрим спроектированное в рамках данной курсовой работы станочное приспособление (рисунок 2). Станочное приспособление предназначено для крепления заготовок устанавливаемых по наружному и внутреннему диаметру.

Предварительную настройку кулачков 15 на заданный размер производят перестановкой их по рифленой поверхности 14. Благодаря плоскому соединению тяги 11 с муфтой 13 кулачки могут самоустанавливаться, в результате чего достигается равномерность зажима заготовки. Привод пневматический.

Патрон трехкулачковый

Расчет приспособления

Исходными данными для расчета приспособления является сила резания и крутящий момент.

Расчет выполняем для операции 010 - токарная.

Силу резания = 1060,85 Н.

Главная составляющая силы резания Pz образует момент резания.

А момент трения Мтр определим по формуле:

Составляем уравнение моментов относительно оси x:

Составляем уравнение сил относительно оси x:

Наладка токарного станка

Наладка она включает в себя установку по операционной карте наладки заданных значений частоты вращения шпинделя и скорости подачи при перемещениях подвижных узлов станка (суппортов, столов и т.п.). С этой целью настраивают коробки скоростей и подач. Производят расстановку (или, при необходимости, проверку правильности расположения) электрических, гидравлических и пневматических упоров и преобразователей управления работой узлов, установку зажимных патронов и выверку правильности расположения режущего инструмента (настройки на размер) согласно операционному чертежу.

В процессе наладки и эксплуатации металлорежущих станков периодически осуществляют проверку их геометрической точности (например, биение шпинделя) на соответствие нормам, указанным в паспорте оборудования.

В процессе текущей наладки станка (подналадки) выполняют только ряд переходов, указанных выше (начиная с четвертого, кроме седьмого и восьмого). Время пуска оборудования в начале каждой смены должно составлять не более 0,5 ч.

Наладка фрезерного станка

Наладка фрезерного станка, осуществляют его подготовку к работе, которая состоит из проверки исправности и готовности станка к выполнению различных операций фрезерования. На холостом ходу проверяют выполнение станком команд по пуску и остановке электродвигателя, включение и выключение вращения шпинделя, включение и выключение механических подач стола.

Убедившись в исправности станка, приступают к его наладке. Методы наладки станков фрезерной группы рассмотрим на примере универсальных консольно-фрезерных станков с ручным управлением.

Наладка сверлильного станка

Перед началом работы на сверлильном станке необходимо произвести его наладку.

Под наладкой станка подразумеваются подготовительные работы по установке и выверке режущего инструмента и приспособлений для крепления обрабатываемых деталей, осмотр и пробный запуск станка, а также подбор и установка требуемого числа оборотов шпинделя и величины подачи инструмента, указанных в технологической карте или назначенных по специальным таблицам. В массовом и серийном производстве наладку станков обычно производят высококвалифицированные рабочие-наладчики, в мелкосерийном и индивидуальном - сами сверловщики.

Однако независимо от того, кто выполнял наладку станка, до начала работы станочник обязан осмотреть станок и опробовать его на холостом ходу. При этом следует проверить состояние шпинделя, который должен вращаться без биения и, так же как и стол станка, плавно перемещаться вверх и вниз.

При обнаружении каких-либо неисправностей станка следует сообщить о них мастеру или наладчику.

Размещено на Allbest.ru

...

Подобные документы

    Назначение и конструкция шестерни. Выбор станочных приспособлений и режущего инструмента. Анализ технологичности конструкции детали. Экономическое обоснование выбора заготовки. Описание конструкции, принципа работы и расчет станочного приспособления.

    курсовая работа , добавлен 07.03.2012

    Назначение и конструкция детали "Рычаг КЗК-10-0115301". Анализ технологичности конструкции детали. Обоснование метода получения заготовки. Расчет припусков на обработку, режимов резания, усилия зажима. Расчет станочного приспособления на точность.

    курсовая работа , добавлен 17.06.2016

    Устройство, принцип работы приспособления для обработки детали "Звездочка". Назначение режимов резания, определение сил резания. Расчет усилия закрепления детали. Расчет пневматического привода. Оценка экономической эффективности приспособления.

    курсовая работа , добавлен 27.06.2015

    Краткое описание и назначение детали "Стакан", анализ ее конструктивных особенностей и используемого материала. Обоснование способа получения заготовки, этапы ее производства и обработки. Расчет и конструирование специального станочного приспособления.

    дипломная работа , добавлен 30.08.2009

    Определение типа производства. Технологический контроль чертежа и анализ технологичности конструкции детали. Выбор и обоснование метода изготовления заготовки. Проектирование станочного приспособления. Назначение режущего и измерительного инструмента.

    курсовая работа , добавлен 04.01.2014

    Анализ механических свойств стали 19ХГН, ее химический состав. Рассмотрение технологического эскиза детали "Корпус". Основные особенности выбора технологических баз. Этапы проектирования станочного приспособления и расчета операционных размеров.

    дипломная работа , добавлен 24.09.2012

    Выбор маршрута обработки детали до выполняемой операции, обоснование схемы базирования и закрепления. Описание конструкции и принципа действия разработанного приспособления. Расчет силового элемента и параметров конструкции приспособления на прочность.

    контрольная работа , добавлен 23.05.2013

    Анализ технических требований, предъявляемых к детали "Втулка", определение типа производства и метода получения заготовки. Расчет припусков на механическую обработку поверхностей и обоснование режимов резания. Проектирование станочного приспособления.

    дипломная работа , добавлен 08.11.2011

    Расчет типа производства. Маршрут обработки детали "вал-шестерня". Операционный эскиз на данную операцию. Схема станочного приспособления, устройство и принцип работы. Расчет сил резания. Паспортные данные станка на заданную операцию. Сборочный чертеж.

    курсовая работа , добавлен 26.02.2010

    Назначение и технологические требования к конструкции изготавливаемой детали - шпинделя металлорежущего станка. Выбор, экономическое обоснование метода получения заготовки, расчет режимов резания. Разработка конструкции специального режущего инструмента.

Оси служат для поддержания вращающихся вместе с ними или на них различных деталей машин и механизмов. Вращение оси вместе с установленными на ней деталями осуществляется относительно ее опор, называемых подшипниками. Примером невращающейся оси может служить ось блока грузоподъемной машины (рис. 1, а), а вращающейся оси - вагонная ось (рис. 1, б). Оси воспринимают нагрузку от расположенных на них деталей и работают на изгиб.

Рис. 1

Конструкции осей и валов.

Валы в отличие от осей предназначены для передачи крутящих моментов и в большинстве случаев для поддержания вращающихся вместе с ними относительно подшипников различных деталей машин. Валы, несущие на себе детали, через которые передается крутящий момент, воспринимают от этих деталей нагрузки и, следовательно, работают одновременно на изгиб и кручение. При действии на установленные на валах детали (конические зубчатые колеса, червячные колеса и т. д.) осевых нагрузок.валы дополнительно работают на растяжение или сжатие. Некоторые валы не поддерживают вращающиеся детали (карданные валы автомобилей, соединительные валки прокатных станов и т. п.), поэтому эти валы работают только на кручение. По назначению различают валы передач, на которых устанавливают зубчатые колеса, звездочки, муфты и прочие детали передач, и коренные валы, на которых устанавливают не только детали передач, но и другие детали, например маховики, кривошипы и т. д.

Оси представляют собой прямые стержни (рис 1, а, б), а валы различают прямые (рис. 1, в, г), коленчатые (рис. 1, д) и гибкие (рис. 1, е). Широко распространены прямые валы. Коленчатые валы в кривошипно-шатунных передачах служат для преобразования возвратно-поступательного движения во вращательное или наоборот и применяются в поршневых машинах (двигатели, насосы). Гибкие валы, представляющие собой многозаходные витые из проволок пружины кручения, применяют для передачи момента между узлами машин, меняющими свое относительное положение в работе (механизированный инструмент, приборы дистанционного управления и контроля, зубоврачебные бормашины и т. п.). Коленчатые и гибкие валы относятся к специальным деталям, их изучают в соответствующих специальных курсах. Оси и валы в большинстве случаев бывают круглого сплошного, а иногда кольцевого поперечного сечения. Отдельные участки валов имеют круглое сплошное или кольцевое сечение со шпоночной канавкой (рис. 1, в, г) или со шлицами, а иногда профильное сечение. Стоимость осей и валов кольцевого сечения обычно больше, чем сплошного сечения; их применяют в случаях, когда требуется уменьшить массу конструкции, например в самолетах (см. также оси сателлитов планетарного редуктора на рис. 4), или разместить внутри другую деталь. Полые сварные оси и валы, изготовляемые из ленты, расположенной по винтовой линии, позволяют снижать массу до 60%.

Оси небольшой длины изготовляют одинакового диаметра по всей длине (рис. 1, а), а длинные и сильно нагруженные – фасонными (рис. 1, б). Прямые валы в зависимости от назначения делают либо постоянного диаметра по всей длине (трансмиссионные валы, рис. 1, в), либо ступенчатыми (рис. 1, г), т.е. различного диаметра на отдельных участках. Наиболее распространены ступенчатые валы, так как их форма удобна для установки на них деталей, каждая из которых должна к своему месту проходить свободно (валы редукторов см. в статье "Зубчатые редукторы" рис. 2; 3; и "Червячная передача" рис. 2; 3). Иногда валы изготовляют заодно с шестернями (см. рис. 2) или червяками (см. рис. 2; 3).


Рис. 2

Участки осей и валов, которыми они опираются на подшипники , называют при восприятии радиальных нагрузок цапфами, при восприятии осевых нагрузок - пятами. Концевые цапфы, работающие в подшипниках скольжения , называют шипами (рис. 2, а), а цапфы, расположенные на некотором расстоянии от концов осей и валов, - шейками (рис. 2, б). Цапфы осей и валов, работающие в подшипниках скольжения, бывают цилиндрическими (рис. 2, а), коническими (рис. 2, в) и сферическими (рис. 2, г). Самые распространенные - цилиндрические щшфы, так как они наиболее просты, удобны и дешевы в изготовлении, установке и работе. Конические и сферические цапфы применяют сравнительно редко, например для регулирования зазора в подшипниках точных машин путем перемещения вала или вкладыша подшипника, а иногда для осевого фиксирования оси или вала. Сферические цапфы применяют тогда, когда вал помимо вращательного движения должен совершать угловое перемещение в осевой плоскости. Цилиндрические цапфы, работающие в подшипниках скольжения, обычно делают несколько меньшего диаметра по сравнению с соседним участком оси или вала, чтобы благодаря заплечикам и буртикам (рис. 2, б) оси и валы можно было фиксировать от осевых смещений. Цапфы осей и валов для подшипников качения почти всегда выполняют цилиндрическими (рис. 3, а, б). Сравнительно редко применяют конические цапфы с небольшим углом конусности для регулирования зазоров в подшипниках качения упругим деформированием колец. На некоторых осях и валах для фиксирования подшипников качения рядом с цапфами предусматривают резьбу для гаек (рис. 3, б;) или кольцевые выточки для фиксирующих пружинных колец.


Рис. 3

Пяты, работающие в подшипниках скольжения, называемых подпятниками, делают обычно кольцевыми (рис. 4, а), а в некоторых случаях - гребенчатыми (рис. 4, б). Гребенчатые пяты применяют при действии на валы больших осевых нагрузок; в современном машиностроении они встречаются редко.


Рис. 4

Посадочные поверхности осей и валов, на которых устанавливают вращающиеся детали машин и механизмов, выполняют цилиндрическими и гораздо реже коническими. Последние применяют, например, для облегчения постановки на вал и снятия с него тяжелых деталей при повышенной точности центрирования деталей.

Поверхность плавного перехода от одной ступени оси или вала к другой называется галтелью (см. рис. 2, а, б). Переход от ступеней меньшего диаметра к ступени большего диаметра выполняют со скругленной канавкой для выхода шлифовального круга (см. рис 3). Для снижения концентрации напряжений радиусы закруглений галтелей и канавок принимают возможно большими, а глубину канавок - меньшей (ГОСТ 10948-64 и 8820-69).

Разность между диаметрами соседних ступеней осей и валов для снижения концентрации напряжений должна быть минимальной. Торцы осей и валов для облегчения установки на них вращающихся деталей машин и предубеждения травмирования рук делают с фасками, т. е. слегка обтачивают на конус (см. рис. 1...3). Радиусы закруглений галтелей и размеры фасок нормализованы ГОСТ 10948-64.

Длина осей обычно не превышает 2...3 м, валы могут быть длиннее. По условиям изготовления, транспортировки и монтажа длина цельных валов не должна превышать 6...7 м. Более длинные валы делают составными и отдельные части их соединяют муфтами или с помощью фланцев. Диаметры посадочных участков осей и валов, на которых устанавливаются вращающиеся детали машин и механизмов, должны быть согласованы с ГОСТ 6636-69 (СТ СЭВ 514-77).

Материалы осей и валов.

Оси и валы изготовляют из углеродистых и легированных конструкционных сталей, так как они обладают высокой прочностью, способностью к поверхностному и объемному упрочнению, легкостью получения прокаткой цилиндрических заготовок и хорошей обрабатываемостью на станках. Для осей и валов без термообработки используют углеродистые стали Ст3, Ст4, Ст5, 25, 30, 35, 40 и 45. Оси и валы, к которым предъявляют повышенные требования к несущей способности и долговечности шлицев и цапф, выполняют из среднеуглеродистых или легированных сталей с улучшением 35, 40, 40Х, 40НХ и др. Для повышения износостойкости цапф валов, вращающихся в подшипниках скольжения, валы делают из сталей 20, 20Х, 12ХНЗА и других с последующей цементацией и закалкой цапф. Ответственные тяжелонагруженные валы изготовляют из легированных сталей 40ХН, 40ХНМА, 30ХГТ и др. Тяжелонагруженные валы сложной формы, например, коленчатые валы двигателей, делают также из модифицированного или высокопрочного чугуна.

Классификация валов и осей строительной машины. Какие виды валов применяются в машинах? Отличие обработки валов и осей, механизмы в виде спаренных валов.

Виды валов и осей машины

Виды валов

Оси - поддерживают вращающиеся части машин. Они могут быть вращающимися и неподвижными.

Валы - не только поддерживают, но и передают вращение.
Бывают: прямые, кривошипные и коленчатые.
Валы рассчитывают на одновременное действие крутящего и изгибающего моментов.
Оси рассчитывают только на изгиб.

  1. вал с прямой осью;
  2. коленчатый вал;
  3. гибкий вал;
  4. карданный вал.

Виды осей

  1. неподвижные;
  2. подвижные.

Оси и валы отличаются от прочих деталей машины тем, что на них насаживаются зубчатые колёса, шкивы и другие вращающиеся части. По условиям работы оси и валы отличаются друг от друга.

Осью называют деталь, которая лишь поддерживает насаженные на неё детали. Ось не испытывает кручения, поскольку нагрузку на неё идёт от расположенных на ней деталей. Она работает на изгиб и не передаёт вращающий момент.

Что же касается вала, то он не только поддерживает детали, но и передаёт момент вращения. Поэтому вал испытывает как изгиб, так и кручение, иногда также сжатие и растяжение. Среди валов выделяют торсионные валы (или просто торсионы), которые не поддерживают вращение деталей и работают исключительно на кручение. Примеры - это карданный вал автомобиля, соединительный валик прокатного стана и многое другое.

Участок в опоре вала или оси называется цапфой, если воспринимает радиальную нагрузку, или пятой, если на него осуществляется осевая нагрузка. Концевая цапфа, принимающая радиальную нагрузку, называется шипом, а цапфу, находящуюся на некотором расстоянии от конца вала, называют шейкой. Ну а та часть вала или оси, которая ограничивает осевое перемещение деталей, называется буртиком.

Посадочная поверхность оси или вала, на которую, собственно, и устанавливаются вращающиеся детали, часто делают цилиндрическими и реже - коническими, чтобы облегчить постановку и снятие тяжёлых деталей, когда требуется высокая точность центрирования. Поверхность, обеспечивающая плавный переход между ступенями, носит название галтели. Переход может выполняться с использованием канавки, которая делает возможным выход шлифовального круга. Концентрация напряжения может быть уменьшена за счёт уменьшения глубины канавок и увеличения закругления канавок и гантелей, насколько возможно.

Чтобы сделать установку вращающихся деталей на ось или вал проще, а также предотвратить травмы рук, торцы делают с фасками, то есть немного обтачивают на конус.
Виды осей и валов

Ось может быть вращающейся (например, ось вагона) или не вращающейся (например, ось блока машины для подъёма грузов).

Ну а вал может быть прямым, коленчатым или гибким. Прямые валы распространены шире всего. Коленчатые находят применение в кривошипно-шатунных передачах насосов и двигателей. Они преобразовывают возвратно-поступательные движения во вращательные, либо наоборот. Что касается гибких валов, то они являются, по сути, мног заходными пружинами кручения, витыми из проволок. Их используют, чтобы передавать момент между узлами машины, если они при работе меняют положение относительно друг друга. И коленчатые, и гибкие валы классифицируются как специальные детали и изучаются на специальных учебных курсах.

Чаще всего ось или вал имеют круглое сплошное сечение, но могут они иметь и кольцевое поперечное сечение, которое позволяет уменьшить общую массу конструкции. Сечение некоторых участков вала может иметь шпоночную канавку или шлицы, а может быть и профильным.

При профильном соединении детали между собой скрепляются с помощью контакта по круглой не плавной поверхности и могут, помимо крутящего момента, передавать и осевую нагрузку. Несмотря на надёжность профильного соединения, его нельзя назвать технологичным, так что применение у них ограничено. Шлицевое же соединение классифицируют по форме профиля зубьев - оно может быть прямобочным, эвольвентным или треугольным.

Валы и оси

План 1. Назначение. 2. Классификация. 3. Конструктивные элементы валов и осей. 4. Материалы и термообработка. 5. Расчеты валов и осей.

Назначение

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин. Вал воспринимает силы, действующие на детали, и передает их на опоры. При работе вал испытывает изгиб и кручение.

Оси предназначены для поддержания вращающихся деталей, полезного крутящего момента не передают. Оси не испытывают кручения. Оси могут быть неподвижные и вращающиеся.

Классификация валов

По назначению:

а) валы передач, несущие детали передач - муфты, зубчатые колеса, шкивы, звездочки;

б) коренные валы машин;

в) другие специальные валы, несущие рабочие органы машин или орудий - колеса или диски турбин, кривошипы, инструменты и т.д.

По конструкции и форме:

а) прямые;

б) коленчатые;

в) гибкие.

Прямые валы делятся на:

а) гладкие цилиндрические;

б) ступенчатые;

в) валы – шестерни, валы – червяки;

г) фланцевые;

д) карданные.

По форме поперечного сечения:

а) гладкие сплошного сечения;

б) пустотелые (для размещения соосного вала, деталей управления, подачи масла, охлаждения);

в) шлицевые.

Оси разделяют на вращающиеся, обеспечивающие лучшую работу подшипников, и неподвижные, требующие встройки подшипников во вращающиеся детали,

Конструктивные элементы валов и осей

Опорная часть вала или оси называется цапфой . Концевая цапфа называется шипом , а промежуточная – шейкой .

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком . Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком.

Для уменьшения концентрации и повышения прочности, переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью. Галтели бывают постоянной и переменной кривизны. Переменность радиуса кривизны галтели повышает несущую способность вала на 10%. Галтели с подвнутрением увеличивают длину базирования ступиц.

Повышение прочности валов в переходных сечениях достигается также удалением малонапряженного материала: выполнением разгрузочных канавок и высверливанием отверстий в ступенях большого диаметра. Эти мероприятия обеспечивают более равномерное распределение напряжений и снижают концентрацию напряжений

Форма вала по длине определяется распределением нагрузок, т.е. эпюрами изгибающих и крутящих моментов, условиями сборки и технологией изготовления. Переходные участки валов между ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах приборах стандартизованы. ГОСТ устанавливает номинальные размеры цилиндрических валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резьбой. ГОСТ устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.

"Горцы валов для облегчения насадки деталей, во избежание обмятий и повреждения рук рабочих выполняют с фасками.

Материалы и термообработка

Выбор материала и термической обработки валов и осей определяется критериями их работоспособности.

Основными материалами для валов и осей служат углеродистые и легированные стали благодаря высоким механическим характеристикам, способности к упрочнению и легкости получения цилиндрических заготовок прокаткой.

Для большинства валов применяют среднеуглеродистые и легированные стали 45, 40Х. Для высоконапряженных валов ответственных машин применяют, легированные стали 40ХН, 40ХНГМА, 30ХГТ, 30ХГСА и др. Валы из этих сталей обычно подвергают улучшению, закалке с высоким отпуском или поверхностной закалке с нагревом ТВЧ и низким отпуском.

Для изготовления фасонных валов - коленчатых, с большими фланцами и отверстиями - и тяжелых валов наряду со сталью применяют высокопрочные чугуны (с шаровидным графитом) и модифицированные чугуны.

Расчет валов и осей

Валы испытывают действие напряжений изгиба и кручения, оси - только изгиба.

В процессе работы валы испытывают значительные нагрузки, поэтому для определения оптимальных геометрических размеров необходимо выполнить комплекс расчетов, включающий в себя определение:

Статической прочности;

Усталостной прочности;

Жесткости при изгибе и кручении.

При высоких скоростях вращения необходимо определять частоты собственных колебаний вала для того, чтобы предотвратить попадание в резонансные зоны. Длинные валы проверяют на устойчивость.

Расчет валов производится в несколько этапов.

Для выполнения расчета вала необходимо знать его конструкцию (места приложения нагрузки, расположение опор и т.п.) В то же время разработка конструкции вала невозможна без хотя бы приближенной оценки его диаметра. На практике обычно используют следующий порядок расчета вала:

1. Предварительно оценивают средний диаметр из расчета только на кручение при пониженных допускаемых напряжениях (изгибающий момент пока не известен, т.к. неизвестны расположение опор и места приложения нагрузок).

Напряжение кручения

Где Wp- момент сопротивления сечения, мм.

Предварительно оценить диаметр вала можно также ориентируясь на диаметр того вала, с которым он соединяется,(валы передают одинаковый момент Т). Например, если вал соединяется с валом электродвигателя (или другой машины) то диаметр его входного конца можно принять равным или близким к диаметру выходного конца вала электродвигателя.

2.Основной расчет вала.

После оценки диаметра вала разрабатывают его конструкцию. Длину участков вала, а, следовательно, плечо приложения силы возьмем из компоновки. Предположим, что нам нужно рассчитать диаметр вала, на котором сидит косозубая шестерня. Вычертим схему нагружений вала. Для этого вала, учитывая наклон зубьев шестерни и направление момента Т, левую опору заменяем шарнирно-неподвижной, а правую - шарнирно-под-вижной. Расчетные нагрузки рассматривают обычно как сосредоточенные, хотя действительные нагрузки не являются сосредоточенными, они распределены по длине ступицы, ширине подшипника. В нашем примере вал нагружен силами Ft, Fa. Fr, действующими в полюсе зацепления и крутящим моментом Т. Осевая сила Fa дает в вертикальной плоскости момент

Основной расчет валов и осей заключается в построении эпюр изгибающих моментов в горизонтальной и вертикальной плоскостях, построении эпюры результирующих моментов, эпюры крутящих моментов, эпюры эквивалентных моментов, определении опасных сечений.

3 этап расчета - проверочный расчет заключается в определении коэффициента запаса прочности в опасных сечениях

- коэффициенты запаса прочности по нормальным и касательным напряжениям

пределы выносливости материалов.

- эффективные коэффициенты концентрации напряжений.

- масштабный фактор (зависит от диаметра вала).

- коэффициент упрочнения. - коэффициенты чувствительности материала, зависят от механических характеристик.

- переменные составляющие напряжений.

- постоянные составляющие напряжений.

Расчет на жесткость

Прогиб осей и валов отрицательно влияет на работу подшипников и зацепления зуб- чатых передач. Жесткость характеризуется максимальным углом поворота оси или вала

и прогибом Необходимая жесткость обеспечивается, если действительные значения и не превышают допустимых . При больших углах поворота в подшипниках скольжения защемляется вал (особенно при большой длине подшипника и цапфы), а у подшипников качения может разрушиться сепаратор. Большие прогибы ухудшают условия работы зубчатых передач (особенно при несимметричном расположении шестерни).

Допустимые значения углов поворота под шестерней [

19.11.2015

Валы и оси используются в машиностроении для фиксации различных тел вращения (это могут быть шестерни, шкивы, роторы и другие элементы, устанавливаемые в механизмах).

Есть принципиальное отличие валов от осей: первые осуществляют передачу момента силы, создаваемого вращением деталей, а вторые испытывают напряжение изгиба под действием внешних сил. При этом валы всегда являются крутящимся элементом механизма, а оси могут быть как крутящимися, так и неподвижными.

С точки зрения металлообработки валы и оси – это металлические детали, чаще всего имеющие круглое поперечное сечение.

Виды валов

Валы различаются между собой по конструкции оси. Выделяют следующие виды валов:

  • прямые. Конструктивно не отличаются от осей. В свою очередь, различают гладкие, ступенчатые и фасонные прямые валы и оси. Наиболее часто в машиностроении используются ступенчатые валы, которые отличает простота установки на механизмы
  • коленчатые, состоящие из нескольких колен и коренных шеек, которые опираются на подшипники. Составляют элемент кривошипно-шатунного механизма. Принцип действия заключается в преобразовании возвратно-поступательного движения во вращательное, либо наоборот.
  • гибкие (эксцентриковые). Применяются для передачи момента вращения между валами со смещенными осями вращения.

Производство валов и осей – одно из наиболее динамичных направлений в металлургической промышленности. На основе этих элементов получают следующие изделия:

  1. элементы передачи вращательного момента (детали шпоночного соединения, шлицы, соединений с натягом и т.д.);
  2. опорные подшипники (качения или скольжения);
  3. уплотнения концов валов;
  4. элементы, регулирующие узлы передачи и опоры;
  5. элементы осевой фиксации лопаток роторов;
  6. галтели перехода между элементами разного диаметра в конструкции.

Выходные концы валов имеют форму цилиндра или конуса, соединяемыми при помощи муфт, шкивов, звездочек.

Валы и оси также могут быть полыми и сплошными. Внутри полых валов могут быть вмонтированы другие детали, кроме того, они могут применяться для облегчения общего веса конструкции.

Функцию осевых фиксаторов, устанавливаемых на вал деталей, выполняют ступени (бурты), распорные втулки со съемной осью, кольца, пружинные упорные кольца подшипников.

Предприятие "Электромаш" осуществляет изготовление данной продукции на производственной площадке, оснащенной самым современным оборудованием. У нас вы можете купить валы и оси любого типа под заказ . Рейтинг: 3.02


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении