mppss.ru – Все про автомобили

Все про автомобили

Колебательный LC контур: принцип действия, расчет, определение. Приём вкр для публикации в эбс спбгэту "лэти" Простейший акселерометр состоит из электрического контура

В основе принципа действия любого акселерометра лежит свойство тел сохранять свое положение неизменным при ускоренном движении основания, на котором они каким-то образом закреплены.

Маятниковые акселерометры с электрической пружиной (рисунок 6) используются в системах стабилизации центра масс РН в позиционном и интегрирующем вариантах. Известно достаточно большое разнообразие конструктивных схем маятниковых акселерометров. Однако общим для них признаком является наличие механической системы, связанной с маятником, и электрической или фотооптической (а также электростатической, емкостной) системы съема полезной информации.

Компенсационный метод измерения, положенный в основу большинства маятниковых акселерометров, в принципе, обеспечивает высокую точность измерения. Реализация этого метода в акселерометрах осуществляется с помощью компенсирующих силовых или моментных устройств, основанных на различных физических принципах - механических, электромагнитных, электростатических.

Наибольшее распространение в настоящее время получили магнитоэлектрические преобразователи, в которых компенсирующие момент или сила создаются за счет взаимодействия магнитного поля, создаваемого током обратной связи, который протекает по обмотке преобразователя, с полем постоянного магнита. Подобные преобразователи обеспечивают получение необходимых моментов (сил) при малых габаритах и имеют приемлемую на данном этапе стабильность параметров.

Принцип действия маятникового акселерометра при разомкнутом ключе (интегрирующий вариант) заключается в следующем. При возникновении кажущегося ускорения W z , направленного по оси OZ, подвижная рамка с маятником, стремящимся сохранить свое положение неизменным, начнет разворачиваться относительно неподвижной рамки. В результате относительного вращения рамок магнитный поток подвижной рамки, пересекая витки обмотки неподвижной рамки, вызовет в ней электродвижущую силу. Напряжение, снимаемое с обмотки неподвижной рамки, после усиления в усилителе поступает через конденсатор и гибкие токопроводы на обмотку подвижной рамки и вызовет в ней ток обратной связи i ос. Этот ток, в свою очередь, вызовет магнитный поток
подвижной рамки. Взаимодействие магнитного потока постоянного магнита с осредненным значением магнитного потока от тока обратной связи явится причиной возникновения механического момента обратной связи M ос, направленного против момента инерционных сил M и.

Если допустить, что кажущееся ускорение W z постоянно, то в установившемся режиме наступит равенство между указанными моментами, т.е. M ос =M и, а мерой измеряемого ускорения может служить сила тока i ос в цепи обратной связи маятникового акселерометра, протекающего по обмотке подвижной рамки.



При разомкнутом ключе и полной идеализации всех звеньев цепи обратной связи можно считать, что

(1.1)

Так как М и =mlW x , то при М ос =М и получим

или после интегрирования при нулевых начальных условиях

(1.3)

Очевидно, что интеграл от кажущегося ускорения равен кажущейся скорости, т.е.

(1.4)

где t к – интервал интегрирования, поэтому

При замкнутом ключе и тех же исходных данных

Таким образом, один и тот же маятниковый акселерометр может быть при гибкой обратной связи интегрирующим, а при жесткой – позиционным. Это обстоятельство широко используется при начальной выставке систем управления летательных аппаратов и при управлении их движением в полете. Так, при разомкнутом ключе повышается точность начальной выставки комплекса командных приборов, поскольку при гибкой обратной связи исключаются статистические погрешности маятникового акселерометра с электрической пружиной, как простейшего контура системы автоматического регулирования.

В акселерометрах компенсационного типа для получения информации о величине ускорения используется датчик угла (ДУ). Наибольшее распространение как в навигационных, так и в промышленных образцах акселерометров получили фотодатчики (ФД) и датчики емкостного типа (ЕД).

Использование ФД позволяет для усиления полезного сигнала использовать относительно несложные электронные схемы. В типичном акселерометре компенсационного типа применен такой ДУ.

Основными элементами этого измерительного устройства являются:

Светодиод SD;

Два фотодиода VD1 и VD2;

Шторка, жестко закрепленная с маятником, и расположенная между свето- и фотодиодами;

Предварительный усилитель аналогового (линейного) сигнала DA, охваченный сопротивлением обратной связи Roc;

Сопротивление, преобразующее напряжение в ток обратной связи RI;

Обмотка датчика момента (ДМ) L.

Принцип действия данного маятникового акселерометра в аналоговом (штатном) режиме заключается в следующем. При возникновении кажущегося ускорения А вх, направленного вдоль оси чувствительности, маятник и жестко связанная с ним шторка, стремящаяся сохранить положение неизменным, начнет разворачиваться относительно корпуса акселерометра. В результате относительного вращения один из светодиодов будет засвечиваться больше, чем другой. Вследствие чего возникнет разность потенциалов на выходе ДУ. Это напряжение будет подано на вход предусилителя и после усиления в виде тока обратной связи поступит в обмотку ДМ. ДМ сформирует компенсирующий момент, который возвратит маятник в исходное состояние. Таким образом, по
величине тока обратной связи можно будет судить о значении кажущегося ускорения.

В момент начала движения маятника акселерометра на него действует сила трения покоя, которая вводит погрешность в измерения (порог чувствительности).

В компенсационных акселерометрах с позиционной обратной связью механическая пружина заменена «электрической пружиной». Под последней понимается электромеханическое устройство, которое создает момент, компенсирующий инерционный момент, возникающий под влиянием измеряемого ускорения.

Рис. VI 1.23. Компенсационный акселерометр маятникового типа

Рис. VI 1.24. Поплавковый вариант компенсационного акселерометра маятникового типа: 1 - индуктивный преобразователь перемещения; 2 - жидкость; 3 - поплавок; 4 - моментный датчик; 5 - усилитель

На рис. VI 1.23 приведена одна из схем компенсационного акселерометра маятникового типа. Отклонение маятника 1 под действием ускорения преобразуется индуктивным датчиком 4 в электрический сигнал, который после усиления подается на обмотку моментного датчика 2. Последний создает компенсирующий момент. Электрический ток на выходе фазочувствительного усилителя 3 и падение напряжения ивих (создаваемое этим током на добавочном сопротивлении) пропорциональны измеряемому ускорению х. Для демпфирования колебаний маятника усилитель содержит корректирующее звено.

На рис. VI 1.24 приведена схема варианта поплавкового компенсационного акселерометра. Подъемная сила поплавка близка к весу всей подвижной части прибора. Центр тяжести поплавка смещен относительно оси поплавка на величину что и обеспечивает необходимую маятниковость. Поплавковые приборы имеют высокую чувствительность вследствие малых погрешностей от сил трения.

Схема компенсационного акселерометра с массой на упругом подвесе, емкостным датчиком сигналов и электромеханическим датчиком, создающим компенсирующую силу, изображена на рис. VI 1.25. Эта схема позволяет ослабить влияние гистерезиса упругого подвеса и нелинейности его характеристики при условии, что жесткость «электрической пружины» намного превышает жесткость упругого подвеса.

Рис. VII.25. Компенсационный акселерометр с упругим подвесом: 1 - емкостный преобразователь перемещения, 2 - инерционная масса; 3 - упругий подвес, 4 - обмотка датчика силы, 5 - усилитель

Рис. VII.26. Схема интегрирующего акселерометра

В силовом датчике, применяемом в схеме «электрической пружины», развиваемая сила должна быть пропорциональна току, протекающему в его обмотке.

Интегрирующие акселерометры. Путевую скорость полета можно определять путем непрерывного интегрирования горизонтальных ускорений, начиная с момента взлета. Для определения пройденного пути полученную величину нужно проинтегрировать еще раз. Интегрирование может быть выполнено двумя способами с помощью:

отдельного электрического или электромеханического интегратора, на вход которого подается сигнал акселерометра, пропорциональный ускорению;

механического или электромеханического интегрирующего устройства, совмещенного с чувствительным элементом акселерометра.

Рассмотрим последний способ подробнее.

На рис. VI 1.26 приведена одна из возможных схем интегрирующего акселерометра. Под влиянием ускорения направленного перпендикулярно плоскости чертежа, маятник 6 отклонится, а в индуктивном датчике 5 возникает сигнал. Этот сигнал, усиленный усилителем заставит вращаться электродвигатель 3. На его оси укреплен постоянный магнит 2, который при вращении вызывает в токопроводящем колпачке 1 вихревые токи. Взаимодействие вихревых токов с полем магнита создает вращающий момент прикладываемый к оси маятника. Вращающий момент пропорционален скорости вращения магнита а:

Но момент уравновешивает инерционный момент акселерометра , следовательно, в установившемся процессе

а угол поворота магнита будет пропорционален интегралу по времени от измеряемого ускорения:

где - длина маятника; - масса маятника; х - измеряемое ускорение.

Рис. VII.27. Схема акселерометра с двойным интегрированием ускорений

Угол а (уменьшаемый с помощью зубчатого редуктора) является выходной координатой интегрирующего акселерометра. Принципиальная схема акселерометра с двойным интегрированием ускорений изображена на рис. VI 1.27. Чувствительным элементом акселерометра является маятник 5, на оси которого укреплен статор 2 электродвигателя.

Внутри статора может свободно вращаться ротор 1. Отклонение маятника от нулевого положения вызывает сигнал в индуктивном датчике 4, подаваемый на усилитель выхода усилителя - на статор электродвигателя. Вращающий момент развиваемый электродвигателем, вызывает вращение ротора с ускорением

где - момент инерции ротора.

Реактивный момент, приложенный со стороны ротора к статору, также равен и направлен навстречу инерционному моменту, развиваемому маятником 5 под влиянием ускорения X

В положении равновесия моменты и (приложенные к оси маятника) взаимно компенсируются. Приравнивая Мер найдем

Угол а (уменьшаемый с помощью зубчатого редуктора) является выходной величиной акселерометра с двойным интегрированием. Погрешность прибора обусловлена главным образом силами трения в подвесе маятника и накапливается пропорционально квадрату времени его работы. Эту погрешность можно снизить уменьшением сил трения и увеличением момента инерции ротора электродвигателя.

Для интегрирования ускорений можно использовать струнный акселерометр. Он представляет собой вибрирующее устройство, состоящее из струны, собственная частота которой меняется в зависимости от ее натяжения, создаваемого инерционной массой под воздействием измеряемого ускорения. Изменение собственной частоты пропорционально корню квадратному из силы натяжения струны, т. е.

где К - коэффициент, зависящий от размеров струны и величины инерционной массы.

Если инерционную массу подвесить между двумя струнами, имеющими начальное натяжение то при наличии ускорения направленного вдоль струн, натяжение одной струны будет увеличиваться на величину а другой - соответственно уменьшится.

При этом собственные частоты колебаний струн

Совместное решение этих уравнений дает

Если в измерительном устройстве поддерживается постоянной сумма частот то разность частот пропорциональна измеряемому ускорению х.

Рис. VII.28. Структурная схема компенсационного акселерометра маятникового типа

При этом интеграл разности частот собственных колебаний двухструнного акселерометра за определенный промежуток времени пропорционален интегралу от ускорения, т. е. приращению скорости за тот же промежуток времени. Для интегрирования сигналов струнного акселерометра можно применить интеграторы цифрового типа или счетчики импульсов, обладающие высокой степенью точности. Методы интегрирования ускорений с помощью гироскопических интегрирующих акселерометров с гиромаятниками приведены в гл. VIII, § 6.

Определение передаточных функций компенсационных акселерометров. Передаточная функция компенсационного акселерометра маятникового типа (рис. VI 1.28) определяется с помощью структурной схемы, показанной на рис. VII.28:

где и - масса и плечо маятника;

Момент инерции подвижной системы;

Передаточные коэффициенты индуктивного датчика, моментного датчика и усилителя;

R - выходное электрическое сопротивление;

Передаточная функция корректирующего звена.

Выражение (VI 1.31) преобразуется к виду

Акселерометром называется прибор, который измеряет проекцию кажущегося ускорения*. Как правило, акселерометр – это закрепленная в упругом подвесе чувствительная масса. В случае наличия кажущегося ускорения по отклонению данной массы от своего первоначального положения и судят о величине этого ускорения.

* Кажущееся ускорение представляет собой разность между истинным ускорением объекта и гравитационным ускорением.

Конструктивное исполнение

Акселерометры бывают одно-, двух- и трехкомпонентные. Из названия, они соответственно измеряют кажущееся ускорение вдоль одной, двух и трех осей (X, Y, Z).

Невесомость

Истинное ускорение объекта в условиях невесомости вызывает лишь гравитационная сила, а потому истинное и гравитационное ускорения равны. Как следствие, отсутствует кажущееся ускорение и данные любого акселерометра равны 0 (нулю). Прекращают функционировать все системы, которые в качестве датчика наклона используют акселерометр. Пример: положение изображения на планшете или смартфоне не будет изменяться, когда вы будете поворачивать корпус.

Схема простейшего акселерометра

Итак, простейший акселерометр состоит из пружины с закрепленным на ней грузом и демпфера, который колебания данного груза и подавляет. Чем кажущееся ускорение больше, тем пружина деформируется сильнее, и показания прибора изменяются.

Когда происходит равновесие силы инерции груза и силы пружины, регистрируется величина смещения данного груза от нейтрального положения, которая свидетельствует о величине ускорения (замедления). Эта величина каким-либо датчиком перемещения регистрируется и на выходе устройства преобразуется в электрический сигнал.

Технологии построения современных акселерометров

В зависимости от технологии построения различают следующие акселерометры:

    пьезоэлектрические;

    пьезорезистивные;

    на переменных конденсаторах.

Пьезоэлектрические акселерометры широко используются в задачах тестирования и измерений. Они отличаются очень широким диапазоном частот и диапазоном чувствительности. Кроме того, могут иметь различные размеры и формы. Выходной сигнал таких акселерометров может быть зарядовым либо по напряжению. С помощью датчиков можно измерять как удар, так и вибрацию.

Пьезорезистивные акселерометры обычно характеризуются малым диапазоном чувствительности, вследствие чего наиболее они применимы для детектирования ударов, нежели для определения вибрации. Кроме того, их используют в испытаниях на безопасность при столкновении. Данные акселерометры имеют в основном широкий диапазон частот, а частотная характеристика может доходить до 0 Гц (так называемые DC-датчики) либо оставаться неизменной. Это дает возможность измерения длительных сигналов.

Акселерометры на переменных конденсаторах , как и пьезорезистивные, имеют DC-ответ. Такие акселерометры имеют высокую чувствительность, узкую полосу пропускания, отличную температурную стабильность, малую погрешность. С помощью данных акселерометров измеряют низкочастотную вибрацию, движение и фиксированное ускорение.

Объектом исследования является микроэлектромеханический (МЭМС) трехосевой акселерометр LSM303DLH в сочетании с трехосевым датчиком магнитного поля.

Целью работы является исследование погрешностей данного акселерометра, создание алгоритмического и программного обеспечения для определения статистических погрешностей датчика.

Предметом исследования являются методики и алгоритмы определения погрешностей МЭМС-акселерометра LSM303DLH.

Рисунок 1 - Трехосевой акселерометр LSM303DLH

Принцип работы сенсоров движения (акселерометров и гироскопов) основан на измерении смещения инерционной массы относительно корпуса и преобразовании его в пропорциональный электрический сигнал. Емкостной метод преобразования измеренного перемещения является наиболее точным и надежным, поэтому емкостные акселерометры получили широкое распространение. Структура емкостного акселерометра состоит из различных пластин, одни из которых являются стационарными, а другие свободно перемещаются внутри корпуса. Емкости включены в контур резонансного генератора. Под действием приложенных управляющих электрических сигналов подвешенная масса совершает колебания. Между пластинами образуется конденсатор, величина емкости которого зависит от расстояния между ними. Под влиянием силы ускорения емкость конденсатора меняется. На рисунке 2 показана топология МЭМС-сенсора.


Рисунок 2 - Топология МЭМС-акселерометра


Рисунок 3 - Виды ЧЭ акселерометров

Основным конструктивным узлом микроэлектромеханических акселерометров являются чувствительный элемент, принципиальные схемы которых приведены на рисунке 2. Чувствительный элемент (ЧЭ) включает в себя инерциальную массу (ИМ) - 1, упругие элементы подвеса - 2, опорную рамку - 3.


Рис. 4 - Принципиальная схема МЭМС-акселерометра: 1 - ИМ, 2 - неподвижные электроды, 3 - анкер, 4 - подвижные электроды, 5 - рамка, 6 - упругий элемент подвеса, 7 - основание (корпус)

Инерциальная масса (ИМ) смонтирована на некотором расстоянии от основания (корпуса) с помощью двух пар упругих элементов, подвеса и анкеров. ИМ перемещается в соответствии с измеряемым ускорением б. Емкостный измеритель перемещений образован гребенчатыми структурами электродов, из которых подвижные электроды образуют единую структуру с ИМ, а неподвижные, объединенные рамкой, скреплены основанием (корпусом).

Основными причинами, вызывающими погрешность измерений МЭМС-акселерометра являются температура, вибрация и перекрестное ускорение.

Изменение температуры окружающей среды приводит к изменению значения диэлектрической проницаемости е, зазора между пластиной маятника и крышками.

При действии перекрестного ускорения возникает дополнительная деформация упругих элементов подвеса и соответствующие им перемещение маятника. Перемещения маятника вдоль оси y совпадают с направлением оси чувствительности и компенсируется датчиком момента, т.е. ошибки не вносят. Перемещения маятника вдоль оси z относительно неподвижных электродов датчика перемещений изменяют эффективную площадь перекрытия электродов и без принятия конструктивных мер могут привести к случайной ошибке. Вероятность появления этой ошибки предотвращается увеличением площади электродов на крышках.

Важнейшими параметрами акселерометра являются диапазон измеряемых ускорений, чувствительность, выражаемая обычно как отношение сигнала в вольтах к ускорению, нелинейность в процентах от полной шкалы, шумы, температурные дрейфы нуля (смещения) и чувствительности. Благодаря этим качествам они нашли свое применение во множестве отраслей: военная и гражданская авиация; автомобилестроение; аэрокосмическое приборостроение; робототехника; военная промышленность; нефтяная и газовая промышленность; спорт; медицина. В ряде случаев существенной характеристикой оказывается собственная частота колебаний сенсора или резонансная частота, определяющая рабочую полосу частот датчика. В большинстве применений важны температурный диапазон и максимально допустимые перегрузки-характеристики, связанные с условиями эксплуатации датчиков. Определяющими параметрами, влияющими на точность определения ускорения, являются дрейфы нуля и чувствительности (в основном температурный), а также шумы датчика, ограничивающие порог разрешения устройства

Чувствительность датчика зависит от резонансной частоты механической подсистемы, а также качества электронного преобразователя. Изменение чувствительности с температурой связано в основном с изменением коэффициента упругости.

Температурный дрейф нуля обусловлен изменением коэффициента упругости, тепловым расширением и технологическими погрешностями изготовления сенсора. Изменение параметров электронной части датчика под действием температуры, как правило, существенно меньше. Поскольку акселерометр измеряет ускорение или силу, вызывающую ускорение инерционной массы, физическая модель акселерометра представляет собой инерционную массу, подвешенную на пружине, закрепленной в неподвижном корпусе, простую систему с одной степенью свободы x в направлении измерительной оси. Инерционная масса приобретает ускорение под действием ускоряющей силы (равнодействующей силы инерции при воздействии ускорения), пропорциональной массе m и ускорению a.

Спектральная плотность мощности (плотность шума, µg /vHz rms) в физике и обработке сигналов - функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Часто термин применяется при описании спектральной мощности потоков электромагнитного излучения или других колебаний в сплошной среде, например, акустических. В этом случае подразумевается мощность на единицу частоты на единицу площади, например: Вт/Гц/м 2 .

Основные характеристики акселерометра LSM303DLH приведены в таблице 1.

Таблица 1 - Основные характеристики акселерометра LSM303DLH


Рисунок 5 - Блок-диаграмма акселерометра LSM303DLH


Рисунок 6 - Расположение пинов акселерометра LSM303DLH

Таблица 2 - Назначение пинов акселерометра LSM303DLH


Рисунок 7 - Структура системы обработки движения


Рисунок 8 - Структурная схема модуля LSM303DLH

Микроэлектромеханические (MEMS) датчики имеют малые массогабаритные характеристики, низкое энергопотребление и стоимость, обладают высокой устойчивостью к перегрузкам и ударам. Основным их недостатком является сравнительно низкая точность. Этот факт в первую очередь обусловлен принципиальным отсутствием на сегодняшний день адекватных и возможных для использования в течение длительных временных интервалов применения по назначению математических моделей погрешностей подобных датчиков.

Наиболее востребованное применение в MEMS-индустрии имеют микромеханические гироскопы и акселерометры. Основными их техническими характеристиками являются динамический диапазон, чувствительность, частотный отклик, характеристики шумовых составляющих. При калибровках микросхемы с достаточной степенью точности фиксируются на наклонно-поворотном столе, что позволят соответствующим образом ориентировать оси акселерометров относительно земной оси и, следовательно, определять их систематические погрешности. Также реализована возможность расчета коэффициентов влияния температуры и напряжения питания на основную систематическую погрешность, особенно характерных для подобных датчиков. Основой развития МЭМС является микроэлектронная технология, которая применяется практически во всех изделиях на основе кремния.

Использование МЭМС-технологий в современных электронных системах позволяет значительно увеличить их функциональность. Используя технологические процессы, почти не отличающиеся от производства кремниевых микросхем, разработчики МЭМС-устройств создают миниатюрные механические структуры, которые могут взаимодействовать с окружающей средой и выступать в роли датчиков, передающих воздействие в интегрированную с ними электронную схему. Именно датчики являются наиболее распространенным примером использования МЭМС-технологии: они используются в гироскопах, акселерометрах, измерителях давления и других устройствах. В настоящее время почти все современные автомобили используют рассмотренные выше МЭМС-акселерометры для активации воздушных подушек безопасности. Микроэлектромеханические датчики давления широко используются в автомобильной и авиационной промышленности. Гироскопы находят применение во множестве устройств, начиная со сложного навигационного оборудования космических аппаратов и заканчивая джойстиками для компьютерных игр. МЭМС-устройства с микроскопическими зеркалами используются для производства дисплеев и оптических коммутаторов.

С появлением микроэлектромеханических систем (МЭМС), инерциальные датчики получили существенное развитие. Такие преимущества как дешевизна, низкое энергопотребление, малые размеры, и возможность изготовления методом групповой технологии позволили инерциальным МЭМС сенсорам получить широкий диапазон применений в автомобильном, компьютерном, и навигационном рынках.

В отличие от традиционной технологии микроакселерометры протравливаются с использованием специализированных методик, комбинирующих механическую микрообработку поверхности поликристаллического кремния и технологии электронных схем.

Подробности Опубликовано 02.10.2019

ЭБС «Лань» информирует о том, что за сентябрь 2019 года обновлены доступные нашему университету тематические коллекции в ЭБС «Лань»:
Инженерно-технические науки - Издательство «Лань» - 20

Надеемся, что новая коллекция литературы будет полезна в учебном процессе.

Тестовый доступ к коллекции «ПожКнига» в ЭБС «Лань»

Подробности Опубликовано 01.10.2019

Уважаемые читатели! C 01.10.2019 г. по 31.10.2019 г. нашему университету предоставлен бесплатный тестовый доступ к новой издательской коллекции в ЭБС «Лань»:
«Инженерно-технические науки» издательства «ПожКнига» .
Издательство «ПожКнига» является самостоятельным подразделением Университета комплексных систем безопасности и инженерного обеспечения (г. Москва). Специализация издательства: подготовка и издание учебно-справочной литературы по пожарной безопасности (безопасность предприятий, нормативно-техническое обеспечение работников системы комплексной безопасности, пожарного надзора, пожарная техника).

Успешное окончание выдачи литературы!

Подробности Опубликовано 26.09.2019

Уважаемые читатели! Мы рады вам сообщить об успешном окончании выдачи литературы студентам первого курса. С 1 октября читальный зал открытого доступа №1 будет работать по обычному графику c 10:00 до 19:00.
С 1 октября студенты, не получившие литературу со своими группами, приглашаются в отделы учебной литературы (помещения 1239, 1248) и отдел социально-экономической литературы (помещение 5512) для получения необходимой литературы в соответствии с установленными правилами пользования библиотекой.
Фотографирование на читательские билеты осуществляется в читальном зале №1 по расписанию: вторник, четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

27 сентября - санитарный день (подписываются обходные листы).

Оформление читательских билетов

Подробности Опубликовано 19.09.2019

Уважаемые студенты и сотрудники университета! 20.09.2019 и 23.09.2019 с 11:00 до 16:00 (перерыв c 14:20 до 14:40) приглашаем всех желающих, в т.ч. студентов первого курса, не успевших сфотографироваться со своими группами, для оформления читательского билета в читальный зал №1 библиотеки (пом. 1201).
С 24.09.2019 возобновляется фотографирование на читательские билеты по обычному графику: вторник и четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

Для оформления читательского билета необходимо при себе иметь: студентам - продлённый студенческий билет, сотрудникам - пропуск в университет или паспорт.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении