mppss.ru – Все про автомобили

Все про автомобили

Кто открыл законы движения планет 1 балл. Первый закон кеплера. Другие достижения Кеплера

Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546-1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона , закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Между сферами Марса и Земли — додекаэдр (двенадцатигранник); между сферами Земли и Венеры — икосаэдр (двадцатигранник); между сферами Венеры и Меркурия — октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). — Примечание переводчика.

И. Кеплер всю свою жизнь пытался доказать, что наша Солнечная система - это какое-то мистическое искусство. Изначально он пытался доказать, что устройство системы имеет сходство с правильными многогранниками из древнегреческой геометрии. Во времена Кеплера было известно о существовании шести планет. Считалось, что они помещаются в хрустальные сферы. По утверждению ученого, эти сферы располагались таким образом, что между соседствующими точно вписываются многогранники правильной формы. Между Юпитером и Сатурном поместился куб, вписанный во внешнюю среду, в которую вписана сфера. Между Марсом и Юпитером находится тетраэдр, и т.п. После долгих лет наблюдений за небесными объектами, появились законы Кеплера, а свою теорию о многогранниках он опроверг.

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна. После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон

Изучение движения тел позволяет ученому установить, что больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии - минимальную. На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии. Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля. По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Возмущенное движение

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение - возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве. В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой. В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой. Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы. При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.

(1546–1601). Они используются в небесной механике и формулируются так:

2. Планета движется так, что ее радиус-вектор за равные интервалы времени заметает равные площади. (Закон площадей.)

3. Квадраты периодов любых двух планет соотносятся как кубы их средних расстояний от Солнца. (Гармонический закон.)

Замечательно, что законы Кеплера, составляющие базис небесной механики, выведены из наблюдений Тихо, выполненных без телескопа.

Закон 1.

Тихо поставил перед Кеплером задачу создания научной теории движения Марса. Следуя методике тех лет, Кеплер перепробовал множество комбинаций эпициклов и эксцентриков, но не смог найти подходящую для точного предвычисления наблюдаемого положения планеты. Наконец, он предположил, что орбита Марса эллиптическая, и увидел, что эта кривая хорошо описывает наблюдения, если Солнце поместить в один из фокусов эллипса. Затем Кеплер предположил (хотя и не мог точно доказать этого), что все планеты движутся по эллипсам, в фокусе которых находится Солнце. А орбиту Луны он описал эллипсом, в фокусе которого расположена Земля .

Действительно, орбиты всех больших планет – эллипсы, причем у Венеры орбита наиболее округлая (эксцентриситет е = 0,0068), а у Плутона наиболее вытянута (е = 0,2485). Орбиты малых планет – астероидов – тоже эллипсы; наиболее круглая орбита у астероида 1177 Гоннезия (е = 0,0063), а наиболее эксцентричная у 944 Идальго (е = 0,656).

Закон 2.

Законы Кеплера полностью эмпирические, они выведены из наблюдений. Чтобы получить закон площадей, Кеплер трудился около восьми лет, проделав громадный объем вычислений. Чем ближе планета к Солнцу, тем быстрее она движется по орбите. Каждый год в начале января Земля, проходя через перигелий, движется быстрее; поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленно, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Закон 3.

Третий, или гармонический, закон Кеплера связывает среднее расстояние планеты от Солнца (a ) с ее орбитальным периодом (t ):

где индексы 1 и 2 соответствуют любым двум планетам.

Пример : найти среднее расстояние от Солнца планеты Уран, имеющей период 84,015 лет. Из приведенной выше формулы, взяв период Земли за 1 год и ее расстояние от Солнца за 1 а.е.,

Ньютон (1643–1727) установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до нее, а не от других свойств, таких, как состав или температура. Он показал также, что закон Кеплера не совсем точен; что в действительности в него входит и масса планеты:

где M – масса Солнца, а m 1 и m 2 – массы планет. Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их расстояния и орбитальные периоды.

Обладал незаурядными математическими способностями. В начале XVII века в результате многолетних наблюдений за движением планет, а также на основе анализа астрономических наблюдений Тихо Браге, Кеплер открыл три закона, названных впоследствии его именем.

Первый закон Кеплера (закон элипсов). Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

Третий закон Кеплера (гармонический закон). Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Давайте рассмотри подробнее каждый из законов.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон описывает геометрию траекторий планетарных орбит. Представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание. Получившейся фигурой будет эллипс. Форма эллипса и степень его сходства с окружностью характеризуется отношением e = c / a, где c — расстояние от центра эллипса до его фокуса (фокальное расстояние), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0, и, следовательно, e = 0 эллипс превращается в окружность.

Ближайшая к Солнцу точка P траектории называется перигелием. Точка A, наиболее удалённая от Солнца, — афелием. Расстояние между афелием и перигелием составляет большую ось эллиптической ор-биты. Расстояние между афелием А и перигелием Р составляет большую ось эллиптической ор-биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца. Среднее расстояние от Земли до Солнца называется астрономической единицей (а. е.) и равно 150 млн км.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, занимает собой равные площади.

Второй закон описывает изменение скорости движения планет вокруг Солнца. С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. На рисунке, площади секторов выделенных синим, равны и соответственно время, за которое планета пройдет каждый сектор, тоже равно. Земля проходит перигелий в начале января, а афелий в начале июля. Второй закон Кеплера, закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Справедливо не только для планет, но и для их спутников.

Третий закон Кеплера позволяет сравнить орбиты планет между собой. Чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты и при движении по орбите ее полный оборот занимает больше времени. Так же с ростом расстояния от Солнца снижается линейная скорость движения планеты.

где T 1 , T 2 — периоды обращения планеты 1 и 2 вокруг Солнца; a 1 > a 2 — длины больших полуосей орбит планет 1 и 2. Полуось — это среднее расстояние от планеты до Солнца.

Познее Ньютон установил, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

где М - масса Солнца, а m 1 и m 2 - масса планеты 1 и 2.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. Так же зная расстояние планеты до Солнца, можно вычислить продолжительность года (время полного оборота вокруг Солнца). И наоборот, зная продолжительность года, можно вычислить расстояние планеты до Солнца.

Три закона движения планет открытые Кеплером дали точное объяснение неравномерности движения планет. Первый закон описывает геометрию траекторий планетарных орбит. Второй закон описывает изменение скорости движения планет вокруг Солнца. Третий закон Кеплера позволяет сравнить орбиты планет между собой. Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении