mppss.ru – Все про автомобили

Все про автомобили

Схема электрическая реверс. Подключение реверсивного магнитного пускателя. Как происходит переключение

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности в соответствии с его .

  1. Условные обозначения на схемах

(далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке ), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

  1. Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

  1. Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя , в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

  1. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется :

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

10

Содержание:

Реверсивный пускатель часто встречается в оборудовании, обеспечивающем работу механизмов и агрегатов, в которых есть функциональное назначение изменения вращения вала электрического двигателя. Схема подключения магнитного пускателя с реверсивным пуском электродвигателя всегда является предметом изучения электриков-любителей и профессионалов для создания собственных конструкций.

В промышленности существует два вида магнитных пускателей: для прямого пуска асинхронного электродвигателя, а также для реверсного пуска электрического двигателя.

Нереверсивное подключение электродвигателя

Специалисты для лучшего понимания реверсного пуска электродвигателя предлагают рассмотреть, как работает нереверсивная схема включения электрического двигателя. В конкретном примере рассматривается пускатель с катушкой управления 220 вольт. Электродвигатель подключается к цепи по следующей цепочке:

  • автоматический трехфазный выключатель;
  • силовые клеммы пускателя (КМ);
  • тепловое реле (ТР).

Катушка управления пускателя (КМ) с одной стороны подключена к рабочему нулю, а другая сторона через цепочку кнопок управления «Пуск» и «Стоп» - к фазе цепи.

Пост управления (КМ) имеет две кнопки: «Пуск» и «Стоп»:

  • у кнопки «Пуск» контакты нормально разомкнутого вида;
  • у кнопки «Стоп» контакты нормально замкнутого вида.

Нормально разомкнутый контакт катушки управления включается параллельно пусковой кнопке. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы. Контакт нормально замкнутый (ТР) включается в цепь катушки управления (КМ).

После включения автоматического трехфазного выключателя напряжение поступает на силовые контакты пускателя и в управляющую цепь катушки - схема приведена в рабочее состояние.

Нереверсивный запуск

Для осуществления пуска электрического двигателя оператору необходимо нажать кнопку «Пуск», тогда в управляющую цепь катушки поступает напряжение, цепь замыкается и срабатывает, втягивая якорь с одновременным замыканием шунтирующего контакта катушки управления. Силовые контакты электрического двигателя получают питание, он начинает вращаться.

Когда оператор отпускает кнопку «Пуск», обмотка (КМ) получает питание от его вспомогательного контакта, двигатель работает.

Остановка

Оператору для остановки нереверсивного двигателя надо нажать кнопку «Стоп», в этом случае происходит разрыв питания катушки управления (КМ), шунтирующий контакт размыкается, якорь катушки приходит в начальное положение, тем самым размыкая силовые контакты. На электродвигателе пропадает напряжение, он останавливается.

Кода отпускается кнопка «Стоп», контакт управляющей обмотки остается разомкнутым, ожидая следующего пуска электросхемы.

Как происходит защита двигателя при нереверсивном пуске

Защита электрического двигателя реализуется при помощи биметаллических контактов (ТР), они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Все контакты пускателя (КМ) возвращаются в начальное положение, а двигатель останавливается. Ниже представлена принципиальная схема подключенного электродвигателя с защитой.

В схеме защиты работы электрического двигателя предусматривается дополнительная защита управления пуском и остановкой механизма, это включение в цепь предохранителя, который реагирует на межвитковое замыкание катушки управления пускателя (КМ).

Устройство магнитного пускателя для реверсного пуска

Реверсивный магнитный пускатель имеет функциональное назначение - запуск электрического двигателя, а также других механизмов, у которых есть функциональное назначение работы в прямом и обратном направлении с изменением вращения вала двигателя. Пускатель выполняет коммутационную функцию силовыми контактами и подачу напряжения на двигатель.

В отличие от контакторов пускатель используется как защита при частых пусках и остановках механизмов и устройств. Пускатели марки ПМЛ широко применяются в схемах реверса трехфазного двигателя для реализации дистанционного пуска в насосных станциях, в башенных кранах и вентиляционных системах, в других механизмах.

Магнитный пускатель в своей конструкции имеет следующие функциональные составляющие:

  • электромагнитная часть с катушкой и подвижным якорем, нормально разомкнутый магнитопровод;
  • главные силовые контакты, назначение которых - соединение и отключение фаз электродвигателя при пуске и остановке. Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря (КМ);
  • блок-контакты функционально предназначены для коммутации цепи управления;
  • переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления (КМ) возвращает в начальное положение, размыкая все контакты.

Как подключается реверсивный пускатель

Схема подключения реверсивного магнитного пускателя необходима для работы электрического двигателя в прямом, а также в обратном направлении. Подключить этот вид пускового устройства для специалиста не составит труда. Очень часто в промышленности реверсивное подключение используется для работы станочного оборудования разного вида (сверлильный, токарный станок и др.). Реверсивная схема реализуется в работе лифтов не бытового назначения.

Реверсивные пускатели имеют отличие в подключении, это дополнительная цепочка управления, а также разница соединения силовой части. В схеме реализована защита от короткого замыкания, это контакты КМ1.2 и КМ2.2, которые имеют нормально замкнутый вид и размещены на пускателях КМ1 и КМ2. Реверсивная схема, представленная на фото, имеет цветовое отличие силовой и управляющей цепей:

Как происходит включение

Схему реверса асинхронного двигателя можно образно разбить на этапы включения: выключатель (QF1) переводим в рабочее положение, в этом случае все реверсивные магнитные пускатели на силовых контактах получают напряжения КМ1 и КМ2 и остаются в таком положении.

Одна фаза задействована в цепи управления обмоток пускателей, ее прохождение:

  • защитный автомат (SF1) - кнопка «Стоп» (SB1) - контактная группа №3 (функционируют с кнопками (SB2) и (SB3);
  • контакт 1ЗНО в пускателях КМ1 и КМ2 становится в ожидание - у него дежурное значение;
  • пускатель реверсивный готов к работе.

Как происходит переключение

Схема реверса электродвигателя предусматривает следующие манипуляции в пускателе: когда оператор нажимает кнопку SB2, он дает питание управления катушкой пускателя (КМ1), далее срабатывают нормально разомкнутые контакты и размыкаются нормально замкнутые контакты в конфигурации КМ1, катушка обеспечивает «подпитку», и питание через силовые контакты поступает на мотор, он начинает вращение.

Если возникла рабочая необходимость сделать реверс электродвигателя, оператору надо поменять приложение силовых контактов (фаз), это реализуется при помощи КМ2. Важно! Всегда, когда делается подключение двигателя для обратного вращения, должна происходить его остановка, это достигается отключением в управлении обмотки КМ1 фазы №1, контакты пускателя занимают начальное положение, электродвигатель обесточен.

Оператор, нажимая кнопку SB3, подает питание на управление обмоткой КМ2, а оно изменяет включение силовых контактов «фаза №2» и «фаза №3» для подключения трехфазного электродвигателя. Он начинает вращение в другом направлении до тех пор, пока не произойдет размыкание контактов управления обмоткой.

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить. Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения. В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Реверс – механизм для направления части реактивной или воздушной струи по направлению движения воздушного судна и создания обратной тяги. Помимо этого, реверсом называют используемый режим работы двигателя самолета , который задействует реверсивное устройство.

Устройство применяется в основном после посадки, на пробеге или для аварийного торможения. Кроме того, реверс используют для движения задним ходом без помощи буксирующего средства. Некоторые самолеты включают реверс прямо в воздухе. Чаще всего устройство эксплуатируется в транспортной и коммерческой авиации. После посадки реверс характеризируется шумом. Его применяют вместе с колесной тормозной системой, что приводит к снижению нагрузки на основную тормозную систему воздушного судна и сокращает дистанцию, в особенности при небольшом коэффициенте сцепления с ВПП, а также в самом начале пробега. Вклад реверсивной тяги сильно отличается в разных ситуациях и моделях самолетов.

Реактивный двигатель

Реверс производится при отклонении всей или части струи, которая поступает с двигателя, при помощи разных затворок. В разнообразных силовых установках реверсивное устройство реализуется по-разному. Специальные затворки способны перекрыть струю, которая создана сугубо внешним контуром турбореактивного двигателя (как на А320), или струи всех контуров (Ту-154М). Конструктивные особенности самолета влияют на оснащение реверса. Это могут быть как все двигатели, так и определенная часть. К примеру, на трехдвигательном Ту-154 реверс могут создавать только крайние двигатели, а самолет Як-40 – средний.

Ковшевые створки – специальный механизм, который перенаправляет воздушный поток. Подобных створок на двигателях может быть от двух и больше. Внешне они похожи на ковши. Например, в двигателе с высокой степенью двухконтурности с перекрытием потока по всей плоскости как у Д-30Ку-154 (Ту-154М).

Способ реверса, в котором в сопле и задней части двигателя установлен специальный металлический профиль, называется профилированные решетки. Двигатель задействован на прямой тяге, а сворки в решетки перенаправляют проход выходящих газов. Подобная конструкция эксплуатируется во многих двигателях самолетов, в частности на силовых установках с невысокой степенью двухконтурности с перекрыванием всего потока (Ту-154, Боинг 727).

Ограничения

Но у реверсной системы есть свои недостатки. К возможным неприятностям можно отнести применение реверса на небольших скоростях (меньше 140 км/ч). Струя может поднимать с поверхности ВПП мусор, который при пробеге самолета на небольших скоростях может попасть в воздухозаборник и стать причиной его повреждения. При больших скоростях поднятый мусор не создает помех из-за того, что не успевает на высоту воздухозаборника.

На реверсивное устройство установлено на четыре двигателя, но в практике 2-м и 3-м двигателем реверс не применяется, потому процесс может повредить обшивку фюзеляжа.

Двигатель с воздушным винтом

Реверс у винтовых воздушных суден реализуется при помощи поворота лопастей винта (меняется угол атаки лопастей на отрицательный), а именно при неменяемом направлении вращения. Поэтому винт создает обратную тягу. Подобный тип реверсивного устройства способен использоваться на поршневых и на турбовинтовых двигателях. Реверс часто предусматривается на амфибиях и гидросамолетах.

Впервые применение реверса началось в 30-х годах. Реверсом оборудовались пассажирские самолеты «Дуглас ДК-2» и «Боинг 247».

Самолеты без реверсивного устройства

Огромное количество самолетов не использует реверс по его ненадобности или технической сложности. К примеру, в связи с некоторыми способностями механизации крыла и высокой эффективностью воздушных тормозов в хвосте ВАе 146-200 включение реверса не требуется. Соответственно, все 4 двигателя в режиме реверса не работают. По той же причине в устройстве реверса не нуждается самолет Як-42.

Большинство летательных аппаратов с форсажными камерами не обладает реверсом из-за величины после посадочного пробега. Это обстоятельство принуждает строить длинные ВПП, в конце которых следует устанавливать аварийные приспособления для торможения. Самолеты в этом случае оборудуются эффективными колесными тормозами и парашютами. Нужно отметить, что пневматика и тормоза подобных самолетов подвергаются сильному износу и часто требуют замены.

Применение реверса в воздухе

Часть самолетов допускает возможность использования реверса тяги прямо в воздухе, но подобное включение зависит от типа самолета. В некоторых ситуациях реверс включается перед посадкой, а в иных – в момент снижения, что значительно понижает вертикальную скорость торможения или дает возможность избежать допустимого превышения скоростей во время пикирования, экстренного снижения или выполнения боевых маневров.

ATR 72 – турбовинтовой авиалайнер, яркий пример использования реверса в воздухе. Кроме того, воздушный реверс могут применять турбореактивный лайнер «Трайдент», сверхзвуковой авиалайнер «Конкорд », военно-транспортный самолет С-17А, истребитель Сааб 37 «Вигген» , турбовинтовой «Пилатус РС-6 » и прочие.

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель - это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитны х пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях - и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение - цепь размыкается. Каждый контакт находится в дугогасительной специальной камере .

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей - или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых - устранить синхронное включение двух групп контактов - реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя - перемена направления вращения электродвигателя. Изменился порядок чередования фаз - поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор .

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том , что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами . Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1 , одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Реверс – это изменение направления вращения электродвигателя. Выполнить реверс можно изменив полярность приходящего на пускатель, питающего напряжения. Это могут быть регуляторы, используемые для двигателей постоянного тока.

Реверс можно выполнить, используя перемену чередования фаз в сети переменного тока. Это действие выполняется в автоматическом режиме при замене полярности сигнала задания, или после поступления определенной команды на нужный логический вход.

Реверс можно осуществить при помощи информации, которая передается по полевой шине, эта возможность входит в определенный набор стандартных функциональных способностей и свойственна большинству современных регуляторов, используемых в цепях переменного тока.

Рис№1. Тезус U (магнитный пускатель) с реверсивным блоком

Функция реверсирования

Для изменения направления двигателя изменяется полярность напряжения приходящего на якорь двигателя.

Основные методы реверсирования

В настоящее время, уже достаточно редко, используется контакторный способ.

Существует статический способ, он заключается в изменении полярности на выходе преобразователя в обмотке якоря или при изменении направления прохождения тока возбуждения. Для этого способа свойственно наличие большой постоянной времени обмотки возбуждения, что не всегда удобно.

Рис. №2. Реверсирование двигателя с помощью магнитного пускателя.

При управляемом торможении механизмов, обладающих высоким моментом инерции нагрузки, необходимо вырабатываемую электрической машиной энергию, возвращать обратно в основную электрическую сеть.

Используя процесс торможения регулятор выступает в качестве инвертора, производимая энергия обладает отрицательным зарядом.. таким образом регулятор может осуществить две операции одна – реверс, другая – рекуперативное торможение. Регулятор оснащается двумя мостами, которые подключены встречно-параллельно.

Используемые мосты инвертируют напряжение и ток.

Рис.№3. Реверс асинхронного электродвигателя с прямым частотным преобразователем; а) скорость и составляющие вектора статорных токов АД, б) фазные напряжения электрической сети и ток нагрузки.

Реверс может осуществляться преобразователем частоты, используемым для асинхронных электрических двигателей.

Управление реверсированием выполняется с помощью векторного управления в замкнутой системе с использованием датчика обратной связи. С его помощью производится независимое управление составляющими тока Id и Iq, они служат для определения потока и вращающегося момента двигателя. Управление асинхронным двигателем аналогично проведению операций по управлению и регулированию двигателем постоянного тока.

Рис.№ 4 . Функциональная схема регулятора скорости с векторным управлением и датчиком обратной связи.

Для осуществления функции реверса, на логическом входе регулятора предназначенного для выполнения этой команды появляется внешний сигнал. Он изменяет порядок коммутации силовых ключей инвертора и реверса двигателя. Реверс можно выполнять в нескольких вариантах.

  • Вариант №1: осуществление действия с помощью противовключения, при стремительном изменении очередности переключения транзисторных ключей .

При изменении чередования фаз на двигателе, находящемся в работе, происходит изменение вращения поля. В результате этого появляется большое скольжение, что создает резко-нарастающее тока ПЧ (преобразователя частоты) до самого большого значения (внутреннее ограничение тока ПЧ). При большом скольжении малый тормозной момент и внутренний регулятор ПЧ уменьшат задание скорости. При достижении электродвигателем нулевой скорости, происходит осуществление реверса, который соответствует кривой разгона. Лишняя энергия, не затраченная на трение и на нагрузку, рассеивается в роторе.

  • Вариант №2: изменение направления вращения электрического поля с управлением периода скорости замедления и без него.

Вращающий момент механизма прямо противоположен моменту двигателя и превышает его по модулю, то есть естественное замедление происходит быстрее во много раз, чем кривая замедления, которую установил регулятор. Значение скорости постепенно снижается и происходит смена направления вращения.

При вращающем моменте, когда естественное торможение меньше установленного регулятором, двигатель начинает работать в состоянии рекуперативного торможения и возвращает энергию преобразователю. Диодные мосты не дают энергии пройти в сеть, конденсаторы фильтра заряжаются, величина напряжения увеличивается и включается устройство безопасности, предохраняющее от выделения энергии.

Для того чтобы предотвратить перенапряжение, через тормозной ключ присоединяют тормозное сопротивление к конденсаторному блоку. Тормозной момент ограничивается емкостью в звене постоянного тока преобразователя, значение скорости падает и происходит смена вращения. Разные модификации резисторов на разные номиналы обеспечивают соответствие мощности двигателя и рассеиваемой энергии. В подавляющем большинстве случаев тормозной ключ в моделях расположен в самом регуляторе.

Наличие тормозного резистора свойственно для регуляторов, предназначенных для обеспечения управляемого торможения, этот метод относится к самым экономически выгодным. С его помощью двигатель может замедлять вращение до самой остановки движения, не меняя направление рабочего вращения.

  • Вариант №3: длительный период работы в режиме торможения.

Этот вариант характерен для испытательных стендов. Выделяющаяся энергия обладает слишком большой величиной, резисторы не могут справиться с ее рассеиванием, потому что произойдет повышение температуры. Для этого предусмотрены системы, которые дают возможность вернуть энергию обратно в электрическую сеть. В этом случае диодный мост не используется, вместо него применяют полупроводниковый мост, изготовленный из IGBT-транзисторов. Выполнение рабочих функций определено с помощью многоуровневого управления, оно дает возможность получить токовую характеристику, приближенную к форме чистого синуса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении