mppss.ru – Все про автомобили

Все про автомобили

088.24 8970 лопатка рабочая твд. Профилирование лопатки ТВД. Конструкция турбины высокого давления

Лопаточный аппарат турбины состоит из неподвижных направ­ляющих и подвижных рабочих лопаток и предназначен для наи­более полного и экономичного преобразования потенциальной энергии пара в механическую работу. Направляющие лопатки, установленные в корпусе турбины, образуют каналы, в которых пар приобретает необходимую скорость и направление. Рабочие лопатки, расположенные на дисках или барабанах ротора тур­бины, находясь под действием давления пара, возникающего в ре­зультате изменения направления и скорости его струи, приводят вал турбины во вращение. Та­ким образом, лопаточный ап­парат является наиболее от­ветственной частью турбины, от которого зависит надеж­ность и экономичность ее ра­боты.

Рабочие лопатки имеют разнообразную конструкцию. Нa рис. 17 показана лопатка простого типа, состоящая из трех частей: хвоста или нож­ки 2, с помощью которых ло­патку крепят в ободе диска 1 , рабочей части 4 , находящейся под действием движущейся струи пара, и вершины 6 для закрепления ленточного бан­дажа 5, которым связывают лопатки с целью создания до­статочной жесткости и обра­зования канала между ними. Между ножками лопаток устанав­ливают промежуточные тела 3. Чтобы предотвратить возникнове­ние температурных напряжений при прогреве и охлаждении тур­бины, бандажом связывают отдельные группы лопаток, оставляя зазор между бандажами 1-2 мм.

Задняя сторона лопатки называется спинкой; грань со стороны входа пара называется входной кромкой, а грань со стороны вы­хода пара - выходной кромкой лопатки. Поперечное сечение ло­патки в пределах ее рабочей части называется профилем лопатки. По профилю различают активные и реактивные лопатки (рис. 18). Угол? 1 называется входным, а угол? 2 - выходным углом ло­патки. У активных лопаток турбин прежней постройки (рис. 18, а) профиль почти симметричный, т. е. входной угол мало отличается от выходного. В реактивных лопатках (рис. 18, б ) профиль несим­метричный, выходной угол значительно меньше входного. Для повышения эффективности работы лопаток входные кромки профи­лей закругляют, а каналы, образованные профилями, выполняют сходящимися. Современные профили активной и реактивной ло­паток с обтекаемой входной кромкой показаны на рис. 18, в и г .

Основные характеристики профиля лопаток следующие:

Средняя линия профиля - геометрическое место центров окружностей, вписанных в профиль;

Геометрические углы: входа? 1 л - угол между касательной к средней линии при входе и осью решетки; ? 2 л - то же при вы­ходе;

Углы входа и выхода потока пара: ? 1 - угол между направ­лением потока пара при входе на рабочую лопатку и осью; ? 2 - то же при выходе;

Угол атаки i - угол между направлением потока пара при входе на рабочую лопатку и касательной к входной кромке по средней ЛИНИИ, Т. е. i = ? – ? 1 ;

Хорда профиля b - расстояние между концами средней линии;

Угол установки? У - угол между хордой профиля и осm. решетки;

Ширина профиля В - размер лопатки по направлению оси турбины;

Шаг t - расстояние между сходственными точками соседних профилей.

Входная кромка современных профилей направляющих и ра­бочих лопаток малочувствительна к отклонению угла потока на входе. Это позволяет при расчете профиля лопатки допустить углы атаки до 3-5° в любом сечении по высоте лопатки. Входную кромку профилей лопаток при дозвуковой скорости делают тол­стой и тщательно закругляют, что снижает вихревые потери на входе в канал и повышает вибрационную, коррозионную и эрози­онную стойкость лопаток. Такая форма входной кромки обеспе­чивает на переменных режимах меньшее влияние изменения угла атаки на к. п. д. лопатки, а также более полное использование входной энергии ступеней.

Геометрические характеристики активных и реактивных про­филей рабочих и направляющих лопаток приводится в нормалях для лопаток судовых турбин (табл. 1, 2).

Размеры лопаток колеблются в широких пределах. В судовых турбинах высота лопаток первых ступеней ТВД небольшая (от 10 мм), а последних ступеней ТВД достигает 400 мм. Ширина ло­паток может быть 14-60 мм. Для уменьшения веса и снижения напряжений от центробежных сил длинным лопаткам придают ширину и толщину, постепенно уменьшающуюся от ножки к вер­шине. На длинных лопатках бандаж обычно не ставят, а для по­лучения большей жесткости лопатки скрепляют связной проволо­кой в пакеты по 5-10 лопаток.

По способу изготовления лопатки можно разделить на две группы:

1) изготовленные штамповкой из листового материала (тол­щиной 1-2 мм) или из прокатанных профильных полос (светло- катаных профилей); промежуточные вставки для этих лопаток выполняются отдельно;

2) изготовленные как одно целое с промежуточными встав­ками путем фрезерования катаных, тянутых, кованых или литых заготовок.

На рис. 17 показаны лопатки, выполненные из прокатанных профильных полос с отдельными вставками. Механическая обра­ботка таких лопаток сводится к фрезерованию ножки и вершины. Эти лопатки имеют постоянный профиль и применяются для не­больших окружных скоростей. Для повышенных окружных скоро­стей используют полуфрезерованные лопатки из более толстых хо­лоднокатаных профильных полос. В таких лопатках вставка ча­стично выполняется заодно с ними и спинка фрезеруется.

Па рис. 19 изображены различные конструкции цельнофрезерованных лопаток, изготовленных совместно со вставками из горяче­катаной полосовой стали прямоугольного и ромбического сечений. Перевязка лопаток (рис. 19, а) осуществляется бандажной лентой. Для больших окружных скоростей лопатку изготовляют как одно целое с бандажной полкой (рис. 19, б ). Смыкаясь, полки образуют сплошное кольцо-бандаж. Как уже отмечалось выше, ширина и толщина длинных лопаток постепенно уменьшается от ножки к вершине (рис. 19, в). Для обеспечения безударного входа пара по всей высоте длинные лопатки иногда выполняют с пере­менным профилем, у которых угол входа постепенно увеличи­вается. Такие лопатки называются винтовыми.

По способу крепления на дисках или барабанах различают лопатки двух типов:

1) с погруженной посадкой, у которых хвосты заведены внутрь специальных выточек в ободе диска или барабана;

2) с верховой посадкой, у которых хвосты надеты верхом на гребень диска и закреплены.

На рис. 20 показаны наиболее распространенные формы лопа­точных хвостов.

Хвосты 3-11 применяют для крепления направляющих и ра­бочих лопаток. Хвосты типа 6 используют в современных турби­нах сухогрузных судов и танке­ров. Хвост 11 делают примерно такой же ширины, что и рабочую лопатку, его применяют для крепления реактивных лопаток. Крепление с верховой посадкой целесообразно для длинных ло­паток, подвергающихся действию значительных усилий.

Лопатки с погруженной по­садкой крепят также в индиви­дуальных осевых канавках с по­мощью сварки. Эти крепления обеспечивают замену любой из лопаток, а также позволяют по­лучить лучшие вибрационные ха­рактеристики и наименьший вес лопаток и диска. Крепление лопа­ток на диске при помощи сварки показано на рис. 21. Плоский хвост 2 лопатки 1 входит в канавку обода диска и приваривается к нему с двух сторон. Для большей прочности лопатки дополнительно скрепляют с диском заклепками 3 и в верхней части сваривают попарно бандажными полками 4. Крепление при помощи сварки повышает точность установки лопа­ток, упрощает и снижает затраты на их сборку. Приварка лопаток находит применение в газовых турбинах.

Для установки лопаточных хвостов на окружности лопаточ­ного венца обычно делают один-два выреза (замковое отверстие), закрываемые замком. При креплении лопаток с верховыми хво­стами типа ЛМЗ в индивидуальных прорезях и с помощью сварки замковые отверстия и замки не требуются.

Обычно лопатки набирают с двух сторон замкового отверстия независимо от количества замков. На рис. 22 изображены неко­торые конструкции замков.

На рис. 22, а в районе замка срезаны заплечики обода диска (показаны пунктиром), удерживающие Т-образный хвост. Лопатки, примыкающие к замковой вставке, во многих конструкциях прошиты штифтами и припаены к своим промежуточным встав­кам. Замковую вставку забивают между прилегающими ло­патками. Через имеющееся в щеке диска отверстие сверлят отвер­стие в замковой вставке, в которое и забивают заклепку. Концы заклепки расклепывают. На рис. 22, б замок представляет собой вставку 2, закрывающую боковой вырез в ободе диска и прикреп­ленную винтами 1 . На рис. 22, в показан замок двухвенечного колеса. Вырез для установки замковых лопаток 1 делают в сред­ней части обода диска между лопаточными канавками. Замковые лопатки крепят двумя планками 2, разгоняемыми клином 4, кото­рый крепится к ободу винтом 3. К недостаткам приведенных кон­струкций замков следует отнести ослабление обода вырезами и отверстиями для винтов. На рис. 22, г показан замок с расклинкой конструкции ЛМЗ. Замковые лопатки 2 и 3 изготовляют с высту­пами внизу, заходящими под хвосты соседних лопаток 1 и 4. После установки подкладки 7, стального клина 6 и подгонки замковой вставки 5, имеющей вырез в нижней части, вставку загоняют между замковыми лопатками.

Замок, конструкция которого показана на рис. 22, д, приме­няют для реактивных лопаток. Замковый вырез в ободе отсут­ствует. Лопатки с хвостовиками зубчикового типа заводят в паз ротора в радиальном направлении. Затем поворачивают на 90° с таким расчетом, чтобы зубчики входили в соответствующие ка­навки в ободе, и перемещают по окружности до места установки. После установки всех лопаток заводят замковую вставку, состоя­щую из двух частей 1 и 4, разгоняемых клипом 3. Клин удерживается отчеканен­ными выступами 2.

Хвостовики верхового типа позволяют получить сравнительно простую конструк­цию замков. На рис. 22, е показан замок для хвостовика типа обратный молот. Зам­ковая лопатка 5 имеет хвостовик с плоской прорезью, который надевается на реборд 4 обода 1 диска и крепится к нему, заклеп­ками 3 . В месте установки замковой ло­патки заплечики 2 (показаны штриховой линией) срезаны.

Лопатки турбины под действием паро­вого потока пара из сопел могут совер­шать колебания: 1) в плоскости вращения диска - тангенциальная вибрация; 2) в плоскости, перпендикулярной вращению ди­ска,- осевая вибрация; 3) крутильные. Осевая вибрация лопаток связана с вибра­цией дисков. Крутильные колебания лопа­ток характеризуются интенсивными колеба­ниями их вершин.

Надежность работы лопаточного аппара­та зависит от величины и характера вибра­ций, возникающих как в лопатках, так и в дисках, па которых они закреплены. Кроме того, лопатки, являясь упругими телами, способны вибрировать с собственными часто­тами. Если собственная частота колебаний лопаток равна или кратна частоте внешней силы, вызывающей эти колебания, то воз­никают так называемые резонансные колебания, не затухающие, а непрерывно продолжающиеся до прекращения действия силы, вызывающей резонанс, или до изменения ее частоты. Резонансные колебания могут вызвать разрушение рабочих лопаток и дисков. Чтобы избежать этого, облопаченные диски современных крупных турбин до установки на вал подвергают настройке, посредством которой изменяется частота их собственных колебаний.

В целях борьбы с вибрацией лопатки скрепляют в пакеты бан­дажной лентой или проволокой. На рис. 23 показано крепление лопаток связной проволокой, которую пропускают через отверстия в лопатках и припаивают к ним серебряным припоем. Как и бан­дажная лента, проволока но окружности состоит из отдельных отрезков длиной от 20 до 400 мм, между которыми возникают тепловые зазоры. Диаметр связной проволоки в зависимости от ширины лопатки принимают 4-9 мм.

Для уменьшения амплитуды колебаний пакетов между ними ставят демпферную проволоку 2 (мостик), ее припаивают к двум- трем крайним лопаткам одного пакета, и она свободно проходит через концевые лопатки сосед­него сегмента. Возникающее тре­ние проволоки о лопатки при вибрации пакета уменьшает амп­литуду колебаний. С помощью отверстий 1 упрощается уста­новка мостика. Материал для из­готовления лопаток должен обладать достаточной стойкостью при высокой температуре и хоро­шей механической обрабатываемостью, быть коррозионно и эрозионно устойчивым. Лопатки, работающие при температуре пара до 425° С, изготовляют из хромистых нержавеющих сталей марок 1X13 и 2X13 с содержанием хрома 12,5-14,5%. При более высо­ких температурах (480-500° С) используют хромоникелевые нер­жавеющие стали с содержанием никеля до 14%. Лопатки, рабо­тающие при температуре пара 500-550° С изготовляют из аустенитных сталей ЭИ123 и ЭИ405 с содержанием никеля 12-14% и хрома 14-16%. Литые лопатки выполняют из стали 2X13. Ма­териалом для вставок служит углеродистая сталь марок 15, 25 и 35, для бандажной ленты, связной проволоки, заклепок к лопат­кам и заклепок замков - нержавеющая сталь 1X13.

Для пайки бандажных лент и связной проволоки применяют серебряный припой марок ПС Р 45 и ПС Р 65 с содержанием серебра соответственно 45 и 65%.

Общая характеристика турбины

Турбина (рисунок 4.1) – осевая, двухступенчатая, состоит из одноступен- чатой ТВД и одноступенчатой ТНД. Обе турбины имеют охлаждаемые возду- хом сопловые и рабочие лопатки. На пониженных дроссельных режимах рабо- ты с целью повышения экономичности двигателя выполнено частичное отклю- чение охлаждения турбины.

Рис. 4.1 Турбина АЛ-31Ф (лист 1 из 2)


Рис. 4.1 Турбина АЛ-31Ф (лист 2 из 2)

Основные параметры и материалы деталей турбины приведены, соответст- венно, в таблицах 4.1 и 4.2.

Основные данные турбины


Таблица 4.1



Материалы деталей турбины


Таблица 4.2



Конструкция турбины высокого давления

Турбина высокого давления предназначена для привода компрессора вы- сокого давления и агрегатов, установленных на коробках приводов двигатель- ных и самолетных агрегатов. Турбина состоит из ротора и статора.

Ротор турбины высокого давления

Ротор турбины (рисунок 4.2) состоит из рабочих лопаток 1, диска 2, цапфы 3 и вала 4.

Рис. 4.2 Ротор турбины (лист 1 из 2)


Рис. 4.2 Ротор турбины (лист 2 из 2)

Рабочая лопатка (рисунок 4.3) – литая, полая с циклонно-вихревой схемой охлаждения. Во внутренней полости, с целью организации течения охлаждаю- щего воздуха, предусмотрены ребра, перегородки и турбулизаторы.


Рис. 4.3 Рабочая лопатка ТВД

Профильная часть лопатки 1 отделена от замка 2 полкой 3 и удлиненной ножкой 4. Полки лопаток, стыкуясь, образуют коническую оболочку, защи- щающую замковую часть лопатки от перегрева. Удлиненная ножка, обладая относительно низкой изгибной жесткостью, обеспечивает снижение уровня вибрационных напряжений в профильной части лопатки. Трехзубый замок 5

«елочного» типа обеспечивает передачу радиальных нагрузок с лопаток на диск. Зуб 6, выполненный в левой части замка, фиксирует лопатку от переме- щения ее по потоку, а паз 7 совместно с элементами фиксации обеспечивает удержание лопатки от перемещения против потока (рисунок 4.4).

Осевая фиксация рабочей лопатки осуществляется зубом и пластинчатым замком. Пластинчатый замок (один на две лопатки) 8 вставляется в пазы лопа- ток в трех местах диска 9, где сделаны вырезы, и разгоняется по всей окружно- сти лопаточного венца. Пластинчатые замки, устанавливаемые в месте распо- ложения вырезов в диске, имеют особую форму. Эти замки монтируются в де- формированном состоянии, а после выпрямления входят в пазы лопаток. При выпрямлении пластинчатого замка лопатки поддерживают с противоположных торцов.


Рис. 4.4 Осевая фиксация рабочих лопаток ТВД (лист 1 из 2)


Рис. 4.4 Осевая фиксация рабочих лопаток ТВД (лист 2 из 2)

Для снижения уровня вибрационных напряжений в рабочих лопатках меж- ду ними под полками размещают демпферы, имеющие коробчатую конструк- цию (рисунок 4.5). При вращении ротора под действием центробежных сил демпферы прижимаются к внутренним поверхностям полок вибрирующих ло- паток. За счет трения в местах контакта двух соседних полок об один демпфер энергия колебаний лопаток будет рассеиваться, что и обеспечит снижение уровня вибрационных напряжений в лопатках.


Рис. 4.5 Демпфер

Диск (рисунок 4.6) турбины штампованный, с последующей механической обработкой. В периферийной части диска выполнены пазы «елочного» типа для крепления 90 рабочих лопаток, канавки 1 для размещения пластинчатых замков осевой фиксации лопаток и наклонные отверстия 2 подвода воздуха, охлаж- дающего рабочие лопатки. Воздух отбирается из ресивера, образованного дву- мя буртиками, левой боковой поверхностью диска и аппаратом закрутки. На правой плоскости полотна диска выполнены буртик 3 лабиринтного уплотне- ния и буртик 4, используемый при демонтаже диска. В ступичной плоской час- ти диска выполнены цилиндрические отверстия 5 под призонные болты, соеди- няющие вал, диск и цапфу ротора турбины.


Рис. 4.6 Диск ТВД (лист 1 из 2)


Рис. 4.6 Диск ТВД (лист 2 из 2)

Балансировка ротора осуществляется грузиками (рисунок 4.7), закрепляе- мыми в проточке буртика диска и зафиксированными замком. Хвостовик замка загибается на балансировочный грузик.


Рис. 4.7 Узел крепления балансировочного груза ротора

Цапфа 1 (рисунок 4.8) обеспечивает опирание ротора о роликовый под- шипник. Левым фланцем цапфа центрируется и соединяется с диском турбины. На наружных цилиндрических проточках цапфы размещены втулки 2 лаби- ринтных уплотнений. Осевая и окружная фиксация втулок осуществляется ра- диальными штифтами 3. Для предотвращения выпадания штифтов под воздей- ствием центробежных сил после их запрессовки отверстия во втулках заваль- цовываются.


Рис. 4.8 Цапфа ТВД (лист 1 из 2)


Рис. 4.8 Цапфа ТВД (лист 2 из 2)

На наружной части хвостовика цапфы, ниже втулок лабиринтного уплот- нения, размещено контактное уплотнение (рисунок 4.9), зафиксированное ко- рончатой гайкой. Гайка законтрена пластинчатым замком.


Рис. 4.9 Узел контактного уплотнения

Внутри цапфы в цилиндрических поясках центрируются втулки контакт- ного и лабиринтного уплотнений. Втулки удерживаются корончатой гайкой, ввернутой в резьбу цапфы. Гайка законтривается отгибом усиков коронки в торцевые прорези цапфы. Контактное уплотнение показано на рисунок 4.10.


Рис. 4.10 Узел контактного уплотнения


дипломная работа

2.1 Расчет на прочность лопатки ТВД

Рабочие лопатки осевой турбины являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

Нагрузки, действующие на лопатки

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки выполняем, учитывая воздействие только статических нагрузок. К ним относятся центробежные силы масс лопаток, которые появляются при вращении ротора, и газовые силы, возникающие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения.

Напряжения кручения от центробежных, газовых сил слабозакрученных рабочих лопаток компрессора малы, и ими пренебрегаем.

Напряжения растяжения от центробежных сил являются наиболее существенными.

Напряжения изгиба обычно меньше напряжений растяжения, причем при необходимости для уменьшения изгибающих напряжений в лопатке от газовых сил ее проектируют так, чтобы возникающие изгибающие моменты от центробежных сил были противоположны по знаку моментам от газовых сил и, следовательно, уменьшали последние.

Допущения, принимаемые при расчете

При расчете лопатки на прочность принимаем следующие допущения:

· лопатку рассматриваем как консольную балку, жестко задела н ную в ободе диска;

· напряжения определяем по каждому виду деформации отдел ь но;

· температуру в рассматриваемом сечении пера лопатки считаем одинаковой, т.е. температурные напряжения отсутс твуют;

· лопатку считаем жесткой, а деформацией лопатки под действием сил и моментов пренебрегаем;

· предполагаем, что деформации лопатки протекают в упругой зоне, т.е. напряжения в пере лопатки не превышают предел пропорциональности;

· температура лопатки изменяется только по длине пера.

Цель расчета

Цель расчета на прочность лопатки ТВД - определение напряжений и запасов прочности в различных сечениях по длине пера лопатки.

В качестве расчетного режима выбираем режим максимальной частоты вращения ротора и максимального расхода воздуха через двигатель. Этим условиям соответствует рабочий режим работы двигателя, то есть с частотой вращения 12220 об/мин.

Исходные данные

1. Материал лопатки: ЖС-6К.

2. Длина лопатки = 0.052 м.

3. Радиус корневого сечения = 0.294 м.

4. Радиус периферийного сечения R п = 0.346 м.

5. Объем бандажной полки м 3 .

6. Хорда профиля сечения пера = 0.0305 м.

7. Максимальная толщина профиля в сечениях:

· в корневом сечении м;

· в среднем сечении м;

· в периферийном сечении м.

8. Максимальная стрела прогиба профиля C max средних линий профиля в сечениях:

· в корневом сечении м;

· в среднем сечении м;

· в периферийном сечении м.

9. Угол установки профиля в сечениях:

· в корневом сечении = 1.0664 (рад);

· в среднем сечении = 0.8936 (рад);

· в периферийном сечении = 0.8116 (рад).

10. Интенсивность газовых сил на среднем радиусе в окружном направлении:

11. Интенсивность газовых сил в осевом направлении

12. Частота вращения рабочего колеса n = 12220 об/мин.

13. Плотность материала лопатки = 8250 кг/м 3 .

14. Для охлаждаемой лопатки турбины можно считать, что на двух третях длины лопатки (от периферийного сечения) температура - постоянна, а на одной трети (у корня) изменяется по закону кубической параболы:

где Х - расстояние от корневого сечения до расчетного;

t Л - температура лопатки в расчетном сечении;

t ЛС - температура лопатки на среднем радиусе (из термогазодинамического расчета);

t ЛК - температура лопатки в корневом сечении.

15. Предел длительной прочности выбираем в зависимости от температуры лопатки:

Согласно нормам прочности минимальный запас по статической прочности профильной части рабочей лопатки турбины должен быть не менее 1.3.

Расчёт на ЭВМ

Вычисления делаем по программе Statlop.exe. Результаты приведены в таблице 2.1.

Таблица 2.1 - Результаты расчета лопатки на прочность

Рисунок 2.1 - График распределения суммарных напряжений лопатки по сечениям

Рисунок 2.2 - График распределения коэффициента запаса прочности лопатки по сечениям

Произведен расчет на статическую прочность пера рабочей лопатки ТВД. В качестве материала была использована жаропрочная сталь ЖС-6К. Полученные значения запасов прочности во всех сечениях удовлетворяют нормам прочности: .

Авиационный винтовентиляторный двигатель

Гидравлический расчет проточной части центробежного насоса НЦВС 40/30

3.5.1 Напряжение в лопасти от расчетного перепада давления напора определяется по формуле, где - расчетный перепад давления, = 11,85 b - ширина лопатки, b = 12 мм д - толщина лопатки, д = 3...

Исследование термонапряженного состояния и оценка ресурса охлаждаемой лопатки турбины авиационного ГТД

В результате расчёта поля напряжений лопатки на базовом режиме получаем, что минимальный запас прочности без ползучести, равный 0,79 имеет точка 55 (таблица 4). Таблица 4 Температура, °С 1010,9 Напряжение у, МПа 113...

Конструкторско-технологическая подготовка мелкосерийного производства валов агрегатов авиационных двигателей на специализированном участке

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Осевой компрессор

Расчёт по высоте лопатки ведётся по закону постоянной циркуляции. Первая ступень РК НА Втулка Периферия Втулка Периферия 124,77 71,52 250,77 155,57 м/с 175 175 м/с 174,61 174,61 град. 54,51 67,77 град. 47,44 32...

Создаем файл исходных данных IGOR0. tm: 9 1 - тип задачи (стационарная, плоская) 0 1 10 - количество отрезков задания теплоотдачи 4 19 63 93 108 111 135 156 178 206 7223,396 - коэффициент теплоотдачи на входной кромке 2885...

Охлаждение лопатки турбины высокого давления

Расчет термонапряженного состояния выполняем с помощью программы GRID3. EXE. Исходный файл SETAX. DAT (см. подпункт 5.3). После запроса указываем имя файла, содержащего данные о температурном поле лопатки (IGOR0. tem). Результат будет занесен в файл с именем IGOR0...

Проектирование турбины винтовентиляторного двигателя

Рабочая лопатка турбины является весьма ответственной деталью газотурбинного двигателя, от надежности работы которой зависит надежность работы двигателя в целом. При работе авиационного двигателя на рабочую лопатку действуют статические...

Разработка конструкции компрессора высокого давления ТРДДФсм для легкого фронтового истребителя на базе существующего ТРДДФсм РД-33

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Расчет турбореактивного двигателя р-95Ш

Технико-экономическое обоснование этапов технологического процесса изготовления, комплектов технологических баз, методов и последовательности обработки поверхностей водила

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом. Нагрузки действующие на лопатки...

Рабочие лопатки осевого компрессора являются ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Узел компрессора ТРДД для пассажирского самолета

Цель расчета на прочность лопатки - определение статических напряжений и запасов прочности в различных сечениях по длине пера лопатки...

Узел компрессора ТРДД для пассажирского самолета

Для расчета разбивают перо лопатки поперечными сечениями на несколько равных участков высотой и ведут расчет от периферии к корневому сечению суммируя нагрузки и вычисляя напряжения...

Узел компрессора ТРДД для пассажирского самолета

Одним из основных видов крепления лопаток компрессора являются замки типа ”ласточкин хвост“. От осевого перемещения лопатки крепятся в пазах. Лопатки могут садиться с натягом до 0,05 мм и с зазором (0,03.0,06) мм. Обычно посадку производят с зазором...

Турбина двигателя? осевая, реактивная, пятиступенчатая, преобразует энергию газового потока в механическую энергию вращения компрессоров и вентилятора двигателя, приводов агрегатов и нагнетателя. Турбина расположена непосредственно за камерой сгорания. К турбине присоединяется реактивное сопло, служащее для создания тяги двигателя за счет реактивной струи.

Турбина состоит из одноступенчатой турбины высокого давления (ТВД), одноступенчатой турбины низкого давления (ТНД) и трехступенчатой турбины вентилятора (ТВ), каждая из которых включает статор, ротор и опору.

Опорами роторов ТВД, ТНД и ТВ, являющимися задними опорами роторов ВД, НД и В, служат роликоподшипники.

Все подшипники охлаждаются и смазываются маслом под давлением. Для предотвращения нагрева подшипников горячими газами их масляные полости изолированы радиально-торцовыми контактными уплотнениями.

Все опоры роторов турбин имеют устройства для гашения колебаний роторов, возникающих при работе двигателя? масляные демпферы опор роторов.

Роторы турбин связаны газодинамической связью.

Турбина высокого давления (ТВД)

Турбина высокого давления (ТВД) ? осевая, реактивная, одноступенчатая, предназначена для преобразования части энергии газового потока, поступающего из КС, в механическую энергию, используемую для вращения ротора КВД и всех приводных агрегатов двигателя.

ТВД включает статор и ротор.

СА набирается из десяти отдельных секторов. В секторах по три (в одном секторе две) сопловые л опатки соединены между собой с помощью пайки.

Сопловые лопатки пустотелые, охлаждаемые воздухом из-за КВД, имеют дефлекторы для поджатия охлаждающего воздуха к внутренним стенкам лопаток и систему перфорационных отверстий в стенках профиля и трактовых полок лопаток, через которые охлаждающий воздух выходит на наружную поверхность лопатки и защищает ее от горячих газов. Ротор ТВД состоит из рабочего колеса (диска с рабочими лопатками), лабиринтного диска, вала ТВД.

Рабочая лопатка - охлаждаемая, состоит из хвостовика, ножки, пера и бандажной полки с гребешками.

Воздух на охлаждение подводится к хвостовику, проходит по радиальным каналам в теле пера лопатки и выходит через отверстия в передней и задней части пера лопатки в проточную часть.

Лопатка - это рабочая деталь ротора турбины. Ступень надежно фиксируется под оптимальным углом наклона. Элементы работают под колоссальными нагрузками, поэтому к ним предъявляют самые жесткие требования по качеству, надежности и долговечности.

Применение и виды лопаточных механизмов

Лопаточные механизмы широко применяются в машинах различного назначения. Наиболее часто используют их в турбинах и компрессорах.

Турбина - ротационный двигатель, работающий под действием значительных центробежных сил. Основной рабочий орган машины - ротор, на котором по всему диаметру закреплены лопатки. Все элементы помещены в общий корпус специальной формы в виде нагнетающего и подающего патрубков или сопел. На лопатки подается рабочая среда (пар, газ или вода), приводя в движение ротор.

Таким образом, кинетическая энергия движущегося потока преобразуется в механическую энергию на валу.

Различают два основных вида турбинных лопаток:

  1. Рабочие - находятся на вращающих валах. Детали передают механическую полезную мощность на присоединенную рабочую машину (часто это генератор). Давление на рабочих лопатках остается постоянным благодаря тому, что направляющие лопатки всю разность энтальпий преобразуют в энергию потока.
  2. Направляющие - закреплены в корпусе турбины. Данные элементы частично преобразуют энергию потока, благодаря чему вращение колес получает тангенциальное усилие. В турбине разница энтальпий должна быть понижена. Это достигается путем уменьшения числа ступеней. Если установить слишком много направляющих лопаток, то срыв потока будет угрожать ускоренному потоку турбины.

Методы изготовления турбинных лопаток

Турбинные лопатки изготавливают методом литья по выплавляемым деталям из высококачественного металлопроката. Используют полосу, квадрат, допускается применение штампованных заготовок. Последний вариант предпочтителен на крупных производствах, так как коэффициент использования металла достаточно высок, а трудозатраты - минимальны.

Лопасти турбин проходят обязательную термическую обработку. Поверхность покрывается защитными составами против развития коррозионных процессов, а также специальными составами, повышающие прочность механизма при работе в условиях высокой температуры. Например, никелевые сплавы практически не поддаются механической обработке, поэтому методы штамповки для производства лопаток не подходят.

Современные технологии подарили возможность производства турбинных лопаток методом направленной кристаллизации. Это позволило получить рабочие элементы с такой структурой, которую практически невозможно сломать. Внедряется метод изготовления монокристальной лопасти, то есть из одного кристалла.

Этапы производства турбинных лопаток:

  1. Литье или поковка. Литье позволяет получать лопатки высокого качества. Поковка производиться по спец заказу.
  2. Механическая обработка. Как правило, для механической обработки применяются токарно-фрезерные автоматизированные центры, например, японский комплекс Mazak или же на фрезерные обрабатывающие центра, такие как MIKRON швейцарского производства.
  3. В качестве финишной обработки применяют только шлифование.

Требования к лопаткам турбин, применяемые материалы

Лопатки турбины эксплуатируются в условиях агрессивной среды. Особо критична высокая температура. Детали работают под напряжением на растяжение, поэтому возникают высокие деформирующие усилия, растягивающие лопатки. Со временем детали касаются корпуса турбины, машина блокируется. Все это обуславливает применение материалов высочайшего качества для изготовления лопаток, способные выдерживать значительные нагрузки при крутящем моменте, а также любые усилия в условиях высокого давления и температуры. Качеством лопаток турбины оценивается общая эффективность агрегата. Напомним, что высокая температура необходима для повышения КПД машины, работающей по циклу Карно.

Лопатки турбины - ответственный механизм. Благодаря нему обеспечивается надежность работы агрегата. Выделим основные нагрузки во время работы турбины:

  • Возникают большие окружные скорости в условиях высокой температуры в паровом или газовом потоке, которые растягивают лопатки;
  • Формируются значительные статические и динамические температурные напряжения, не исключая и вибрационные нагрузки;
  • Температура в турбине достигает 1000-1700 градусов.

Все это предопределяет применение высококачественных жаропрочных и нержавеющих сталей для производства лопаток турбин.

Например, могут быть использованы такие марки как 18Х11МФНБ-ш, 15Х11МФ-ш, а также различные сплавы на основе никеля (до 65%) ХН65КМВЮБ.

В качестве легирующих элементов в состав такого сплава дополнительно вводят следующие компоненты: 6% алюминия, 6-10% вольфрама, тантала, рения и немного рутения.

Лопаточный механизм должен обладать определенной теплостойкостью. Для этого в турбине делают сложные системы охлаждающих каналов и выходных отверстий, которые обеспечивают создание воздушной пленки на поверхности рабочей или направляющей лопатки. Раскаленные газы не касаются лопасти, поэтому происходит минимальный нагрев, но сами газы не остывают.

Все это повышает КПД машины. Охлаждающие каналы формируются при помощи керамических стержней.

Для их производства применяют оксид алюминия, температура плавления которого достигает 2050 градусов.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении