mppss.ru – Все про автомобили

Все про автомобили

Переменные и подстроечные резисторы. Реостат. Растягиваем диапазон регулировки. Грубая настройка, точная подстройка. Схемы растягивания. Способы настроить. Методы подстроить Включить переменный резистор для напряжения

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт . Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А ), а сопротивление каждого из них равно 50 Ом , тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт . В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт .

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте .

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Взглянем на переменный резистор… Что мы о нём знаем? Пока ничего, ведь мы ещё даже не знаем основных параметров этой весьма распространённой в электронике радиодетали. Так давайте же узнаем больше о параметрах переменных и подстроечных резисторов.

Для начала, стоит отметить то, что переменные и подстроечные резисторы являются пассивными компонентами электронных схем. Это значит, что они потребляют энергию электрической цепи в процессе своей работы. К пассивным элементам цепи также относят конденсаторы , катушки индуктивности и трансформаторы .

Параметров, за исключением прецизионных изделий, которые используются в военной или космической технике, у них не слишком много:

    Номинальное сопротивление . Без сомнения, это основной параметр. Полное сопротивление может быть в пределах от десятков ом до десятков мегаом. Почему полное сопротивление? Это сопротивление между крайними неподвижными выводами резистора - оно не изменяется.

    С помощью регулирующего ползунка мы можем менять сопротивление между любым из крайних выводов и выводом подвижного контакта. Сопротивление будет меняться от нуля и до полного сопротивления резистора (или наоборот - в зависимости от подключения). Номинальное сопротивление резистора указывается на его корпусе с помощью буквенно-числового кода (М15М, 15k и т.п.)

    Рассеиваемая или номинальная мощность (мощность резистора). В обычной электронной аппаратуре используются переменные резисторы мощностью: 0,04; 0,25; 0,5; 1,0; 2,0 ватта и более.

    Стоит понимать, что проволочные переменные резисторы, как правило, мощнее тонкоплёночных. Да это и не мудрено, ведь тонкая проводящая плёнка может выдержать куда меньший ток, чем провод. Поэтому о мощностных характеристиках можно ориентировочно судить даже по внешнему виду "переменника" и его конструкции.

    Максимальное или предельное рабочее напряжение . Тут всё и так понятно. Это максимальное рабочее напряжение резистора, превышать которое не стоит. Для переменных резисторов максимальное напряжение соответствует ряду: 5, 10, 25, 50, 100, 150, 200, 250, 350, 500, 750, 1000, 1500, 3000, 8000 Вольт. Предельные напряжения некоторых экземпляров:

    СП3-38 (а - д) на мощность 0,125 Вт - 150 В (для работы в цепях переменного и постоянного тока);

    СП3-29а - 1000 В (для работы в цепях переменного и постоянного тока);

    СП5-2 - от 100 до 300 В (в зависимости от модификации и номинального сопротивления).

В одной из предыдущих статей мы обсудили основные аспекты, касающиеся работы с , так вот сегодня мы продолжим эту тему. Все, что мы обсуждали ранее, касалось, в первую очередь, постоянных резисторов , сопротивление которых представляет из себя не изменяющуюся величину. Но это не единственный существующий вид резисторов, поэтому в данной статье мы уделим внимание элементам, имеющим переменное сопротивление .

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов 🙂 Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора :

Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает 🙂

Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя. Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме). Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до . А – это ни что иное как полное сопротивление резистивного слоя.

Конструктивно переменные резисторы бывают поворотные , то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:

Переменный резистор ползункового типа выглядит несколько иначе:

Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором – к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости – при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит такой резистор так:

Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.

Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически – это подстроечные резисторы. Давайте уделим немного времени и им 🙂

Подстроечные резисторы.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно 😉), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!!!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.

(переменный резистор, включенный по схеме реостата) в основном используется для регулировки силы тока. Если мы включим последовательно с реостатом амперметр, то при перемещении ползунка будем видеть меняющееся значение силы тока. Резистор в этой схеме исполняет роль нагрузки, ток через которую мы и собираемся регулировать переменным резистором. Пусть максимальное сопротивление реостата равно , тогда по закону Ома максимальный ток через нагрузку будет равен:

Здесь мы учли то, что ток будет максимальным при минимальном значении сопротивления в цепи, то есть когда ползунок в крайнем левом положении. Минимальный ток будет равен:

Вот и получается, то реостат выполняет роль регулировщика тока, протекающего через нагрузку.

В данной схеме есть одна проблема – при потере контакта между ползунком и резистивным слоем цепь окажется разомкнутой и через нее перестанет протекать ток. Решить эту проблему можно следующим образом:

Отличие от предыдущей схемы заключается в том, что дополнительно соединены точки 1 и 2. Что это дает в обычном режиме работы? Да ничего, никаких изменений 🙂 Поскольку между ползунком резистора и точкой 1 ненулевое сопротивление, то весь ток потечет напрямую на ползунок, как и при отсутствии контакта между точками 1 и 2. А что же произойдет при потере контакта между ползунком и резистивным слоем? А эта ситуация абсолютно идентична отсутствию прямого соединения ползунка с точкой 2. Тогда ток потечет через реостат (от точки 1 к точке 3), и величина его будет равна:

То есть при потере контакта в данной схеме будет всего лишь уменьшение силы тока, а не полный разрыв цепи как в предыдущем случае.

С реостатом мы разобрались, давайте рассмотрим переменный резистор, включенный по схеме потенциометра.

Не пропустите статью про измерительные приборы в электрических цепях –

В отличие от реостата, используется для регулировки напряжения. Именно по этой причине на нашей схеме вы видите целых два вольтметра 🙂 Ток протекающий через потенциометр, от точки 3 к точке 1, при перемещении ползунка остается неизменным, но меняется величины сопротивления между точками 2-3 и 2-1. А поскольку напряжение прямо пропорционально силе тока и сопротивлению, то оно будет меняться. При перемещении ползунка вниз сопротивление 2-1 будет уменьшаться, соответственно, уменьшаться будут и показания вольтметра 2. При таком перемещении ползунка (вниз) сопротивление участка 2-3 вырастет, а вместе с ним и напряжение на вольтметре 1. При это в сумме показания вольтметров будут равны напряжению источника питания, то есть 12 В. В крайнем верхнем положении на вольтметре 1 будет 0 В, а на вольтметре 2 – 12 В. На рисунке ползунок расположен в среднем положении, и показания вольтметров, что абсолютно логично, равны 🙂

На этом мы заканчиваем рассматривать переменные резисторы , в следующей статье речь пойдет о возможных соединениях резисторов между собой, спасибо за внимание, рад буду видеть вас на нашем сайте! 🙂

В прошлый раз для подключения светодиода к источнику постоянного тока напряжением 6,4 В (4 батарейки АА) мы использовали резистор с сопротивлением порядка 200 Ом. Это в принципе обеспечивало нормальную работу светодиода и не допускало его перегорания. Но что, если мы хотим регулировать яркость светодиода?

Для этого самым простым вариантом будет использование потенциометра (или подстроечного резистора). Он представляет собой в большинстве случаев цилиндр с ручкой регулировки сопротивления и тремя контактами. Разберемся как же он устроен.

Следует помнить, что правильно регулировать яркость светодиода ШИМ-модуляцией, а не изменением напряжения, поскольку для каждого диода существует оптимальное рабочее напряжение. Но для наглядности демонстрации использования потенциометра такое его применение (потенциометра) в учебных целях допустимо.

Отжав четыре зажима и сняв нижнюю крышку мы увидим, что два крайних контакта подсоединены к графитовой дорожке. Средний контакт соединен с кольцевым контактом внутри. А ручка регулировки просто передвигает перемычку, соединяющую графитовую дорожку и кольцевой контакт. При вращении ручки меняется длина дуги графитовой дорожки, которая в конечном итоге и определяет сопротивление резистора.

Следует отметить, что при измерении сопротивления между двумя крайними контактами, показания мультиметра будут соответствовать номинальному сопротивлению потенциометра, поскольку в этом случае измеряемое сопротивление соответствует сопротивлению всей графитовой дорожке (в нашем случае 2 кОм). А сумма сопротивлений R1 и R2 всегда будет примерно равна номинальному, вне зависимости от угла поворота ручки регулировки.

Итак подключив последовательно к светодиоду потенциометр, как показано на схеме, меняя его сопротивление, можно менять яркость светодиода. По сути, при изменении сопротивления потенциометра, мы меняем ток, проходящий через светодиод, что и приводит к изменению его яркости.

Правда при этом следует помнить, что для каждого светодиода есть предельно допустимый ток, при превышении которого он просто сгорает. Поэтому, чтобы предотвратить сгорание диода при слишком сильном выкручивании ручки потенциометра, можно включить последовательно еще один резистор с сопротивлением порядка 200 Ом (данное сопротивление зависит от типа используемого светодиода) как показано на схеме ниже.

Для справки: светодиоды нужно подключать длинной «ногой» к +, а короткой к -. В противном случае светодиод при малых напряжениях просто не будет гореть (не будет пропускать ток), а при некотором напряжении, называемым напряжением пробоя (в нашем случае это 5 В) диод выйдет из строя.

Управляемый напряжением переменный резистор, электронная регулировка сопротивления. Электронный потенциометр (10+)

Переменный резистор, управляемый напряжением

Одним из распространенных применений полевого транзистора является использование его в качестве резистора, сопротивление которого зависит от управляющего напряжения. Это может быть нужным для регулировки усиления, сжатия динамического диапазона сигнала или создания блоков одновременно дистанционно регулируемых переменных резисторов.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи


Устройство и принцип действия источника стабильного тока. ...

Усилитель / Генератор синусоиды на тиристоре (динисторе, тринисторе, с...
Схемы усилителя и генератора синусоидального сигнала на тиристоре в нестандартно...

Делитель напряжения. Схема, расчет, формула. Рассчитать. Применение. О...
Делитель напряжения. Онлайн расчет. Применение на примере осциллографа...

Как не перепутать плюс и минус? Защита от переполюсовки. Схема...
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст...

Термодатчик, датчик температуры, LM135, LM235, LM335, LM335Z, LM335AZ,...
Термодатчики LM135 - LM335. Данные, применение, цоколевка....

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука...
Включение светодиодов в светодиодном фонаре....

Простой импульсный прямоходовый преобразователь напряжения. 5 - 12 вол...
Схема простого преобразователя напряжения для питания операционного усилителя....

Соединение светодиодов. Последовательное, параллельное включение оптоэ...
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн...



Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении